您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 综合/其它 > (完整版)解三角形经典练习题集锦(附答案)
解三角形一、选择题1.在△ABC中,若0030,6,90BaC,则bc等于()A.1B.1C.32D.322.若A为△ABC的内角,则下列函数中一定取正值的是()A.AsinB.AcosC.AtanD.Atan13.在△ABC中,角,AB均为锐角,且,sincosBA则△ABC的形状是()A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形4.等腰三角形一腰上的高是3,这条高与底边的夹角为060,则底边长为()A.2B.23C.3D.325.在△ABC中,若Babsin2,则A等于()A.006030或B.006045或C.0060120或D.0015030或6.边长为5,7,8的三角形的最大角与最小角的和是()A.090B.0120C.0135D.0150二、填空题1.在Rt△ABC中,090C,则BAsinsin的最大值是_______________。2.在△ABC中,若Acbcba则,222_________。3.在△ABC中,若aCBb则,135,30,200_________。4.在△ABC中,若sinA∶sinB∶sinC7∶8∶13,则C_____________。5.在△ABC中,,26AB030C,则ACBC的最大值是________。三、解答题1.在△ABC中,若,coscoscosCcBbAa则△ABC的形状是什么?2.在△ABC中,求证:)coscos(aAbBcabba3.在锐角△ABC中,求证:CBACBAcoscoscossinsinsin。4.在△ABC中,设,3,2CAbca求Bsin的值。解三角形一、选择题1.在△ABC中,::1:2:3ABC,则::abc等于()A.1:2:3B.3:2:1C.1:3:2D.2:3:12.在△ABC中,若角B为钝角,则sinsinBA的值()A.大于零B.小于零C.等于零D.不能确定3.在△ABC中,若BA2,则a等于()A.Absin2B.Abcos2C.Bbsin2D.Bbcos24.在△ABC中,若2lgsinlgcoslgsinlgCBA,则△ABC的形状是()A.直角三角形B.等边三角形C.不能确定D.等腰三角形5.在△ABC中,若,3))((bcacbcba则A()A.090B.060C.0135D.01506.在△ABC中,若1413cos,8,7Cba,则最大角的余弦是()A.51B.61C.71D.817.在△ABC中,若tan2ABabab,则△ABC的形状是()A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形二、填空题1.若在△ABC中,060,1,3,ABCAbS则CBAcbasinsinsin=_______。2.若,AB是锐角三角形的两内角,则BAtantan_____1(填或)。3.在△ABC中,若CBCBAtantan,coscos2sin则_________。4.在△ABC中,若,12,10,9cba则△ABC的形状是_________。5.在△ABC中,若Acba则226,2,3_________。6.在锐角△ABC中,若2,3ab,则边长c的取值范围是_________。三、解答题1.在△ABC中,0120,,21,3ABCAcbaS,求cb,。2.在锐角△ABC中,求证:1tantantanCBA。3.在△ABC中,求证:2cos2cos2cos4sinsinsinCBACBA。4.在△ABC中,若0120BA,则求证:1cabcba。5.在△ABC中,若223coscos222CAbac,则求证:2acb(数学5必修)第一章:解三角形一、选择题1.A为△ABC的内角,则AAcossin的取值范围是()A.)2,2(B.)2,2(C.]2,1(D.]2,2[2.在△ABC中,若,900C则三边的比cba等于()A.2cos2BAB.2cos2BAC.2sin2BAD.2sin2BA3.在△ABC中,若8,3,7cba,则其面积等于()A.12B.221C.28D.364.在△ABC中,090C,00450A,则下列各式中正确的是()A.sincosAAB.sincosBAC.sincosABD.sincosBB5.在△ABC中,若)())((cbbcaca,则A()A.090B.060C.0120D.01506.在△ABC中,若22tantanbaBA,则△ABC的形状是()A.直角三角形B.等腰或直角三角形C.不能确定D.等腰三角形二、填空题1.在△ABC中,若,sinsinBA则A一定大于B,对吗?填_________(对或错)2.在△ABC中,若,1coscoscos222CBA则△ABC的形状是______________。3.在△ABC中,∠C是钝角,设,coscos,sinsin,sinBAzBAyCx则zyx,,的大小关系是___________________________。4.在△ABC中,若bca2,则CACACAsinsin31coscoscoscos______。5.在△ABC中,若,tanlgtanlgtanlg2CAB则B的取值范围是_______________。6.在△ABC中,若acb2,则BBCA2coscos)cos(的值是_________。三、解答题1.在△ABC中,若)sin()()sin()(2222BAbaBAba,请判断三角形的形状。1.如果△ABC内接于半径为R的圆,且,sin)2()sin(sin222BbaCAR求△ABC的面积的最大值。3.已知△ABC的三边cba且2,2CAbca,求::abc4.在△ABC中,若()()3abcabcac,且tantan33AC,AB边上的高为43,求角,,ABC的大小与边,,abc的长[基础训练A组]一、选择题1.C00tan30,tan3023,244,23bbacbcba2.A0,sin0AA3.Ccossin()sin,,22AABAB都是锐角,则,,222ABABC4.D作出图形5.D012sin,sin2sinsin,sin,302baBBABAA或01506.B设中间角为,则22200005871cos,60,180601202582为所求二、填空题1.1211sinsinsincossin222ABAAA2.012022201cos,12022bcaAAbc3.2600sin6215,,4sin4sin154sinsinsin4abbAAaAABB4.0120a∶b∶csinA∶sinB∶sinC7∶8∶13,令7,8,13akbkck22201cos,12022abcCCab5.4,,sinsinsinsinsinsinACBCABACBCABBACBACACBC2(62)(sinsin)4(62)sincos22ABABABmax4cos4,()42ABACBC三、解答题1.解:coscoscos,sincossincossincosaAbBcCAABBCCsin2sin2sin2,2sin()cos()2sincosABCABABCCcos()cos(),2coscos0ABABABcos0A或cos0B,得2A或2B所以△ABC是直角三角形。2.证明:将acbcaB2cos222,bcacbA2cos222代入右边得右边2222222222()222acbbcaabcabcabcab22abababba左边,∴)coscos(aAbBcabba3.证明:∵△ABC是锐角三角形,∴,2AB即022AB∴sinsin()2AB,即sincosAB;同理sincosBC;sincosCA∴CBACBAcoscoscossinsinsin4.解:∵2,acb∴sinsin2sinACB,即2sincos4sincos2222ACACBB,∴13sincos2224BAC,而0,22B∴13cos24B,∴313sin2sincos22244BBB839[综合训练B组]一、选择题1.C132,,,::sin:sin:sin::1:3:2632222ABCabcABC2.A,ABAB,且,AB都是锐角,sinsin()sinABB3.Dsinsin22sincos,2cosABBBabB4.Dsinsinlglg2,2,sin2cossincossincossinAAABCBCBCsin()2cossin,sincoscossin0,BCBCBCBCsin()0,BCBC,等腰三角形5.B22()()3,()3,abcbcabcbcabc222222013,cos,6022bcabcabcAAbc6.C2222cos9,3cababCc,B为最大角,1cos7B7.D2cossinsinsin22tan2sinsin2sincos22ABABABabABABABabAB,tan2tan,tan022tan2ABABABAB,或tan12AB所以AB或2AB二、填空题1.33922113sin3,4,13,13222ABCSbcAccaa13239sinsinsinsin332abcaABCA2.,22ABAB,即sin()2tantan()2cos()2BABBcos1sintanBBB,1tan,tantan1tanAABB3.2sinsintantancoscosBCBCBCsincoscossinsin()2sin1coscossinsin2BCBCBCABCAA4.锐角三角形C为最大角,cos0,CC为锐角5.060222843233114cos226222(31)222bcaAbc6.(5,13)222222222222213,49,513,51394abccacbccccbac三、解答题1.解:1sin3,4,2ABCSbcAbc2222cos,5abcbcAbc,而cb所以4,1cb2.证明:∵△ABC是锐角三角形,∴,2AB即022AB∴sinsin()2AB,即sincosAB;同理sincosBC;sincosCA∴sinsinsinsinsinsincoscoscos,1coscoscosABCABCABCABC∴1tantantanCBA3.证明:∵sinsinsin2sincossin()22ABABABCAB2sincos2sincos2222ABABABAB2sin(coscos)222ABABAB2cos2coscos222CAB4coscoscos222ABC∴2cos2cos2cos4sinsinsinCBACBA4.证明:要证1cabcba,只要证2221aacbbcabbcacc,即222a
本文标题:(完整版)解三角形经典练习题集锦(附答案)
链接地址:https://www.777doc.com/doc-7479212 .html