您好,欢迎访问三七文档
类型一.有关概念的识别1.下面几个数:0.23,1.010010001…,,3π,,,其中,无理数的个数有()A、1B、2C、3D、4解析:本题主要考察对无理数概念的理解和应用,其中,1.010010001…,3π,是无理数故选C举一反三:【变式1】下列说法中正确的是()A、的平方根是±3B、1的立方根是±1C、=±1D、是5的平方根的相反数【变式2】如图,以数轴的单位长线段为边做一个正方形,以数轴的原点为圆心,正方形对角线长为半径画弧,交数轴正半轴于点A,则点A表示的数是()A、1B、1.4C、D、【变式3】=类型二.计算类型题2.设,则下列结论正确的是()A.B.C.D.解析:(估算)因为,所以选B举一反三:【变式1】1)1.25的算术平方根是__________;平方根是__________.2)-27立方根是例题精讲__________.3)___________,___________,___________.【变式2】求下列各式中的(1)(2)(3)类型三.数形结合3.点A在数轴上表示的数为,点B在数轴上表示的数为,则A,B两点的距离为______解析:在数轴上找到A、B两点,举一反三:【变式1】如图,数轴上表示1,的对应点分别为A,B,点B关于点A的对称点为C,则点C表示的数是().A.-1B.1-C.2-D.-2【答案】选C[变式2]已知实数、、在数轴上的位置如图所示:化简【答案】:类型四.实数绝对值的应用4.化简下列各式:(1)|-1.4|(2)|π-3.142|(3)|-|(4)|x-|x-3||(x≤3)(5)|x2+6x+10|分析:要正确去掉绝对值符号,就要弄清绝对值符号内的数是正数、负数还是零,然后根据绝对值的定义正确去掉绝对值。解:(1)∵=1.414…<1.4∴|-1.4|=1.4-(2)∵π=3.14159…<3.142∴|π-3.142|=3.142-π(3)∵<,∴|-|=-(4)∵x≤3,∴x-3≤0,∴|x-|x-3||=|x-(3-x)|=|2x-3|=说明:这里对|2x-3|的结果采取了分类讨论的方法,我们对这个绝对值的基本概念要有清楚的认识,并能灵活运用。(5)|x2+6x+10|=|x2+6x+9+1|=|(x+3)2+1|∵(x+3)2≥0,∴(x+3)2+1>0∴|x2+6x+10|=x2+6x+10举一反三:【变式1】化简:类型五.实数非负性的应用5.已知:=0,求实数a,b的值。分析:已知等式左边分母不能为0,只能有>0,则要求a+7>0,分子+|a2-49|=0,由非负数的和的性质知:3a-b=0且a2-49=0,由此得不等式组从而求出a,b的值。解:由题意得由(2)得a2=49∴a=±7由(3)得a-7,∴a=-7不合题意舍去。∴只取a=7把a=7代入(1)得b=3a=21∴a=7,b=21为所求。举一反三:【变式1】已知(x-6)2++|y+2z|=0,求(x-y)3-z3的值。【变式2】已知那么a+b-c的值为___________类型六.实数应用题6.有一个边长为11cm的正方形和一个长为13cm,宽为8cm的矩形,要作一个面积为这两个图形的面积之和的正方形,问边长应为多少cm。解:设新正方形边长为xcm,根据题意得x2=112+13×8∴x2=225∴x=±15∵边长为正,∴x=-15不合题意舍去,∴只取x=15(cm)答:新的正方形边长应取15cm。举一反三:【变式1】拼一拼,画一画:请你用4个长为a,宽为b的矩形拼成一个大正方形,并且正中间留下的空白区域恰好是一个小正方形。(4个长方形拼图时不重叠)(1)计算中间的小正方形的面积,聪明的你能发现什么?(2)当拼成的这个大正方形边长比中间小正方形边长多3cm时,大正方形的面积就比小正方形的面积多24cm2,求中间小正方形的边长.解析:(1)如图,中间小正方形的边长是:,所以面积为=大正方形的面积=,一个长方形的面积=。所以,答:中间的小正方形的面积,发现的规律是:(或)(2)大正方形的边长:,小正方形的边长:,即,又大正方形的面积比小正方形的面积多24cm2所以有,化简得:将代入,得:cm答:中间小正方形的边长2.5cm。类型七.易错题7.判断下列说法是否正确(1)的算术平方根是-3;(2)的平方根是±15.(3)当x=0或2时,(4)是分数解析:(1)错在对算术平方根的理解有误,算术平方根是非负数.故(2)表示225的算术平方根,即=15.实际上,本题是求15的平方根,故的平方根是.(3)注意到,当x=0时,=,显然此式无意义,发生错误的原因是忽视了“负数没有平方根”,故x≠0,所以当x=2时,x=0.(4)错在对实数的概念理解不清.形如分数,但不是分数,它是无理数.类型八.引申提高8.(1)已知的整数部分为a,小数部分为b,求a2-b2的值.(2)把下列无限循环小数化成分数:①②③(1)分析:确定算术平方根的整数部分与小数部分,首先判断这个算术平方根在哪两个整数之间,那么较小的整数即为算术平方根的整数部分,算术平方根减去整数部分的差即为小数部分.解:由得的整数部分a=5,的小数部分,∴(2)解:(1)设x=①则②②-①得9x=6∴.(2)设①则②②-①,得99x=23∴.(3)设①则②②-①,得999x=107,∴.
本文标题:实数中考经典试题
链接地址:https://www.777doc.com/doc-7491354 .html