您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2017-2018学年人教教七年级上第四章章末综合检测试卷含解析
章末综合检测(时间:90分钟满分:120分)一、选择题(每小题3分,共30分)1.下列第一行的四个图形,每个图形均是由四种简单的图形a,b,c,d(圆、直线、三角形、长方形)中的两种组成.例如,由a,b组成的图形记作a⊙b,那么由此可知,下列选项的图形,可以记作a⊙d的是()2.如图4-1,该几何体从正面看得到的平面图形是()图4-13.对于直线AB、线段CD、射线EF,其中能相交的图是()4.下列现象:(1)用两个钉子就可以把木条固定在墙上;(2)从A地到B地架设电线,总是尽可能沿着线段AB架设;(3)植树时,只要确定两棵树的位置,就能确定同一行树所在的直线;(4)把弯曲的公路改直,就能缩短路程.其中能用“两点确定一条直线”来解释的现象是()A.(1)(2)B.(1)(3)C.(2)(4)D.(3)(4)5.如图4-2,AB=12,C为AB的中点,点D在线段AC上,且AD∶CB=1∶3,则线段DB的长度为()图4-2A.4B.6C.8D.106.已知线段AB和点P,如果PA+PB=AB,那么()A.P为AB的中点B.点P在线段AB上C.点P在线段AB外D.点P在线段AB的延长线上7.学校、书店、邮局在平面图上的标点分别是A,B,C,书店在学校的正东方向,邮局在学校的南偏西25°,那么平面图上的∠CAB等于()A.25°B.65°C.115°D.155°8.若∠1=40.4°,∠2=40°4′,则∠1与∠2的关系是()A.∠1=∠2B.∠1>∠2C.∠1<∠2D.以上都不对图4-39.如图4-3,∠AOB=130°,射线OC是∠AOB内部任意一条射线,OD,OE分别是∠AOC,∠BOC的平分线,下列叙述正确的是()A.∠DOE的度数不能确定B.∠AOD+∠BOE=∠EOC+∠COD=∠DOE=65°C.∠BOE=2∠CODD.∠AOD=12∠EOC10.如图4-4,OD⊥AB于点O,OC⊥OE,图中与∠AOC互补的角有()图4-4A.1个B.2个C.3个D.4个二、填空题(每小题4分,共32分)11.夏天,快速转动的电扇叶片,给我们一个完整的平面的感觉,说明_____.12.如图4-5,C,D是线段AB上的两点,若AC=4,CD=5,DB=3则图中所有线段长度的和是_____.图4-513.已知∠A=100°,那么∠A的补角是_____.14.时钟上3点40分时分针与时针夹角的度数为____.15.如图4-6,O在直线AB上,∠AOD=90°,∠COE=90°,则图中相等的锐角有_____对.图4-616.已知∠AOC和∠BOD都是直角,如果∠AOB=150°,那么∠COD的度数为_____.17.如图4-7,一个正方体的表面上分别写着连续的6个整数,且每两个相对面上的两个数的和都相等,则这6个整数的和为_____.图4-718.平面内有四个点A,B,C,D,过其中每两个点画直线可以画出的直线有_____.三、解答题(共58分)19.(8分)计算:(1)22°18′×5;(2)90°-57°23′27″.20.(8分)把图4-8的展开图和它们的立体图形连起来.图4-821.(10分)如图4-9,已知线段a,b,c,用圆规和直尺画图.(不用写作法,保留画图痕迹)(1)画线段AB,使得AB=a+b-c;(2)在直线AB外任取一点K,画射线AK和直线BK;(3)反向延长AK至点P,使AP=KA,画线段PB,比较所画图形中线段PA与BK长度的和与线段AB长度的大小.图4-922.(10分)如图4-10,已知线段AB和CD的公共部分BD=13AB=14CD,线段AB,CD的中点E,F之间的距离是10cm,求线段AB,CD的长度.图4-1023.(10分)如图4-11(1),已知直角三角形两直角边的长分别为3和4,斜边的长为5.(1)试计算该直角三角形斜边上的高;(2)按如图4-11(2),4-11(3),4-11(4)三种情形计算该直角三角形绕某一边旋转得到的立体图形的体积.(结果保留π)图4-1124.(12分)如图4-12,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.(1)请你数一数,图中有多少个小于平角的角;(2)求出∠BOD的度数;(3)请通过计算说明OE是否平分∠BOC.图4-12答案一、1.A解析:根据题意,知a代表长方形,d代表直线,所以记作a⊙d的图形是长方形和直线的组合.故选A.2.A3.B解析:A.直线AB与线段CD不能相交,故此选项不符合题意;B.直线AB与射线EF能相交,故此选项符合题意;C.射线EF与线段CD不能相交,故此选项不符合题意;D.直线AB与射线EF不能相交,故此选项不符合题意.故选B.4.B解析:(1)用两个钉子就可以把木条固定在墙上,根据是两点确定一条直线;(2)从A地到B地架设电线,总是尽可能沿着线段AB架设,根据是两点之间,线段最短;(3)植树时,只要确定两棵树的位置,就能确定同一行树所在的直线,根据是两点确定一条直线;(4)把弯曲的公路改直,就能缩短路程,根据是两点之间,线段最短.故选B.5.D解析:因为C为AB的中点,AB=12,所以AC=BC=12AB=12×12=6.因为AD∶CB=1∶3,所以AD=2,所以DB=AB-AD=12-2=10.故选D.6.B解析:如图D4-1.因为PA+PB=AB,所以点P在线段AB上.故选B.图D4-17.C解析:如图D4-2.由图可知,∠CAB=∠1+∠2=25°+90°=115°.故选C.图D4-28.B解析:因为∠1=40.4°=40°24′,∠2=40°4′,所以∠1>∠2.故选B.9.B解析:因为OD,OE分别是∠AOC,∠BOC的平分线,所以∠AOD=∠COD,∠EOC=∠BOE.又因为∠AOD+∠BOE+∠EOC+∠COD=∠AOB=130°,所以∠AOD+∠BOE=∠EOC+∠COD=∠DOE=65°.故选B.10.B解析:根据题意,得(1)因为∠AOC+∠BOC=180°,所以∠BOC与∠AOC互补.(2)因为OD⊥AB,OC⊥OE,所以∠EOD+∠DOC=∠BOC+∠DOC=90°,所以∠EOD=∠BOC,所以∠AOC+∠EOD=180°,所以∠EOD与∠AOC互补,所以图中与∠AOC互补的角有2个.故选B.二、11.线动成面12.41解析:AD=AC+CD=9,AB=AC+CD+DB=12,CB=CD+DB=8,故题图中所有线段长度的和为AC+AD+AB+CD+CB+DB=41.13.80°14.130°解析:3点40分时分针与时针夹角的度数为30°×4+13=130°.15.2解析:因为∠AOD=90°,所以∠AOC+∠COD=90°.因为∠COE=90°,所以∠COD+∠DOE=90°,所以∠AOC=∠DOE.因为∠BOD=180°-∠AOD=90°,所以∠DOE+∠BOE=90°,所以∠BOE=∠COD.故图中相等的锐角有2对.16.30°或150°解析:如图D4-3(1),因为∠BOD=90°,∠AOB=150°,所以∠AOD=60°.又因为∠AOC=90°,所以∠COD=30°.如图D4-3(2),因为∠BOD=90°,∠AOC=90°,∠AOB=150°,所以∠AOD=60°,所以∠COD=150°.综上所述,∠COD的度数为30°或150°.图D4-317.51解析:因为正方体的表面展开图,相对的面一定相隔一个正方形,所以6若不是最小的数,则6与9是相对面.因为6与9相邻,所以6是最小的数,所以这6个整数的和为6+7+8+9+10+11=51.18.1条、4条或6条解析:如果A,B,C,D四点在同一直线上,那么只能确定一条直线,如图D4-4(1);如果4个点中有3个点(不妨设点A,B,C)在同一直线上,而第4个点,点D不在此直线上,那么可以确定4条直线,如图D4-4(2);如果4个点中,任何3个点都不在同一直线上,那么点A分别和点B,C,D确定3条直线,点B分别与点C,D确定2条直线,最后点C,D确定一条直线,这样共确定6条直线,如图D4-4(3).综上所述,过其中每2个点可以画1条、4条或6条直线.(1)(2)(3)图D4-4三、19.解:(1)22°18′×5=110°90′=111°30′.(2)90°-57°23′27″=32°36′33″.20.解:如图D4-5.图D4-521.分析:(1)首先作射线CE在射线CE上截取CD=a,BD=b,再在CB上截取AC=c,则可得出AB=a+b-c;(2)根据射线和直线的概念过点K即可作出;(3)根据AP=AK,利用两点之间线段最短即可得出答案.解:(1)如图D4-6(1).(2)如图D4-6(2).(1)(2)(3)图D4-6(3)如图D4-6(3).因为AP=KA,所以线段PA与BK长度的和大于线段AB的长度.22.解:设BD=xcm,则AB=3xcm,CD=4xcm,AC=6xcm.因为E,F分别为线段AB,CD的中点,所以AE=12AB=1.5x(cm),CF=12CD=2x(cm).所以EF=AC-AE-CF=6x-1.5x-2x=2.5x(cm).因为EF=10cm,所以2.5x=10,解得x=4.所以AB=12cm,CD=16cm.23.解:(1)三角形的面积为12×5h=12×3×4,解得h=12/5.(2)在图4-11(2)中,所得立体图形的体积为13π×32×4=12π;在图4-11(3)中,所得立体图形的体积为13π×42×3=16π;在图4-11(4)中,所得立体图形的体积为13π×(125)2×5=485π.24.解:(1)图中小于平角的角有∠AOD,∠AOC,∠AOE,∠DOC,∠DOE,∠DOB,∠COE,∠COB,∠EOB,共9个.(2)因为∠AOC=50°,OD平分∠AOC,所以∠DOC=1/2∠AOC=25°,∠BOC=180°-∠AOC=130°.所以∠BOD=∠DOC+∠BOC=155°.(3)因为∠DOE=90°,∠DOC=25°,所以∠COE=∠DOE-∠DOC=90°-25°=65°.又因为∠BOE=∠BOD-∠DOE=155°-90°=65°,所以∠COE=∠BOE,即OE平分∠BOC.
本文标题:2017-2018学年人教教七年级上第四章章末综合检测试卷含解析
链接地址:https://www.777doc.com/doc-7492816 .html