您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 【解析版】北京市海淀区2014-2015学年九年级上期中数学试卷
2014-2015学年北京市海淀区九年级(上)期中数学试卷一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的.1.如图图形是中心对称图形的是()A.B.C.D.2.将抛物线y=x2向上平移1个单位,得到的抛物线的解析式为()A.y=x2+1B.y=x2﹣1C.y=(x+1)2+1D.y=(x﹣1)2+13.袋子中装有4个黑球、2个白球,这些球的形状、大小、质地等完全相同,即除颜色外无其他差别.在看不到球的情况下,随机从袋子中摸出1个球.下面说法正确的是()A.这个球一定是黑球B.这个球一定是白球C.“摸出黑球”的可能性大D.“摸出黑球”和“摸出白球”的可能性一样大4.用配方法解方程x2﹣2x﹣3=0时,配方后得到的方程为()A.(x﹣1)2=4B.(x﹣1)2=﹣4C.(x+1)2=4D.(x+1)2=﹣45.如图,⊙O为正五边形ABCDE的外接圆,⊙O的半径为2,则的长为()A.B.C.D.6.如图,AB是⊙O的直径,CD是⊙O的弦,∠ABD=59°,则∠C等于()A.29°B.31°C.59°D.62°7.已知二次函数y=x2﹣4x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2﹣4x+m=0的两个实数根是()A.x1=1,x2=﹣1B.x1=﹣1,x2=2C.x1=﹣1,x2=0D.x1=1,x2=38.如图,C是半圆O的直径AB上的一个动点(不与A,B重合),过C作AB的垂线交半圆于点D,以点D,C,O为顶点作矩形DCOE.若AB=10,设AC=x,矩形DCOE的面积为y,则下列图象中能表示y与x的函数关系的图象大致是()A.B.C.D.二、填空题(本题共16分,每小题4分)9.如图,PA,PB分别与⊙O相切于点A,B,连接AB.∠APB=60°,AB=5,则PA的长是.10.若关于x的一元二次方程x2﹣4x+k=0有两个相等的实数根,则k的值为.11.在平面直角坐标系xOy中,函数y=x2的图象经过点M(x1,y1),N(x2,y2)两点,若﹣4<x1<﹣2,0<x2<2,则y1y2.(用“<”,“=”或“>”号连接)12.如图,正方形ABCD中,点G为对角线AC上一点,AG=AB.∠CAE=15°且AE=AC,连接GE.将线段AE绕点A逆时针旋转得到线段AF,使DF=GE,则∠CAF的度数为.三、解答题(本题共30分,每小题5分)13.解方程:x2+3x﹣1=0.14.如图,∠DAB=∠EAC,AB=AD,AC=AE.求证:BC=DE.15.已知二次函数的图象经过点(0,1),且顶点坐标为(2,5),求此二次函数的解析式.16.如图,四边形ABCD内接于⊙O,∠ABC=130°,求∠OAC的度数.17.若x=1是关于x的一元二次方程x2﹣4mx+2m2=0的根,求代数式2(m﹣1)2+3的值.18.某厂工业废气年排放量为450万立方米,为改善城市的大气环境质量,决定分二期投入治理,使废气的年排放量减少到288万立方米,如果每期治理中废气减少的百分率相同,求每期减少的百分率是多少?四、解答题(本题共20分,每小题5分)19.如图是某市某月1日至15日的空气质量指数趋势图,空气质量指数不大于100表示空气质量优良,空气质量指数大于200表示空气重度污染.(1)由图可知,该月1日至15日中空气重度污染的有天;(2)小丁随机选择该月1日至15日中的某一天到达该市,求小丁到达该市当天空气质量优良的概率.20.已知关于x的方程ax2+(a﹣3)x﹣3=0(a≠0).(1)求证:方程总有两个实数根;(2)若方程有两个不相等的负整数根,求整数a的值.21.如图,AB是⊙O的直径,CD是弦,CD⊥AB于点E,点G在直径DF的延长线上,∠D=∠G=30.(1)求证:CG是⊙O的切线;(2)若CD=6,求GF的长.22.阅读下面材料:小丁在研究数学问题时遇到一个定义:对于排好顺序的三个数:x1,x2,x3,称为数列x1,x2,x3.计算|x1|,,,将这三个数的最小值称为数列x1,x2,x3的价值.例如,对于数列2,﹣1,3,因为|2|=2,=,=,所以数列2,﹣1,3的价值为.小丁进一步发现:当改变这三个数的顺序时,所得到的数列都可以按照上述方法计算其相应的价值.如数列﹣1,2,3的价值为;数列3,﹣1,2的价值为1;….经过研究,小丁发现,对于“2,﹣1,2”这三个数,按照不同的排列顺序得到的不同数列中,价值的最小值为.根据以上材料,回答下列问题:(1)数列﹣4,﹣3,2的价值为;(2)将“﹣4,﹣3,2”这三个数按照不同的顺序排列,可得到若干个数列,这些数列的价值的最小值为,取得价值最小值的数列为(写出一个即可);(3)将2,﹣9,a(a>1)这三个数按照不同的顺序排列,可得到若干个数列.若这些数列的价值的最小值为1,则a的值为.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.在平面直角坐标系xOy中,抛物线y=x2﹣(m﹣1)x﹣m(m>0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.(1)求点A的坐标;(2)当S△ABC=15时,求该抛物线的表达式;(3)在(2)的条件下,经过点C的直线l:y=kx+b(k<0)与抛物线的另一个交点为D.该抛物线在直线l上方的部分与线段CD组成一个新函数的图象.请结合图象回答:若新函数的最小值大于﹣8,求k的取值范围.24.将线段AB绕点A逆时针旋转60°得到线段AC,继续旋转α(0°<α<120°)得到线段AD,连接CD.(1)连接BD,①如图1,若α=80°,则∠BDC的度数为;②在第二次旋转过程中,请探究∠BDC的大小是否改变.若不变,求出∠BDC的度数;若改变,请说明理由.(2)如图2,以AB为斜边作直角三角形ABE,使得∠B=∠ACD,连接CE,DE.若∠CED=90°,求α的值.25.如图,在平面直角坐标系xOy中,点P(a,b)在第一象限.以P为圆心的圆经过原点,与y轴的另一个交点为A.点Q是线段OA上的点(不与O,A重合),过点Q作PQ的垂线交⊙P于点B(m,n),其中m≥0.(1)若b=5,则点A坐标是;(2)在(1)的条件下,若OQ=8,求线段BQ的长;(3)若点P在函数y=x2(x>0)的图象上,且△BQP是等腰三角形.①直接写出实数a的取值范围:;②在,,这三个数中,线段PQ的长度可以为,并求出此时点B的坐标.2014-2015学年北京市海淀区九年级(上)期中数学试卷参考答案与试题解析一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的.1.如图图形是中心对称图形的是()A.B.C.D.考点:中心对称图形.分析:根据中心对称图形的概念求解.解答:解:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选B.点评:本题考查了中心对称图形的知识,中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.将抛物线y=x2向上平移1个单位,得到的抛物线的解析式为()A.y=x2+1B.y=x2﹣1C.y=(x+1)2+1D.y=(x﹣1)2+1考点:二次函数图象与几何变换.分析:先得到抛物线y=x2的顶点坐标为(0,0),再利用点的平移规律得到点(0,0)向上平移1个单位得到的点的坐标为(0,1),然后根据顶点式写出平移后的抛物线解析式.解答:解:抛物线y=x2的顶点坐标为(0,0),点(0,0)向上平移1个单位得到的点的坐标为(0,1),所以所得到的抛物线的解析式为y=x2+1.故选A.点评:本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.3.袋子中装有4个黑球、2个白球,这些球的形状、大小、质地等完全相同,即除颜色外无其他差别.在看不到球的情况下,随机从袋子中摸出1个球.下面说法正确的是()A.这个球一定是黑球B.这个球一定是白球C.“摸出黑球”的可能性大D.“摸出黑球”和“摸出白球”的可能性一样大考点:可能性的大小.分析:根据概率公式先求出摸出黑球和白球的概率,再进行比较即可得出答案.解答:解:∵布袋中有除颜色外完全相同的6个球,其中4个黑球、2个白球,∴从布袋中随机摸出一个球是黑球的概率为=,摸出一个球是白球的概率为=,∴摸出黑球”的可能性大;故选C.点评:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.4.用配方法解方程x2﹣2x﹣3=0时,配方后得到的方程为()A.(x﹣1)2=4B.(x﹣1)2=﹣4C.(x+1)2=4D.(x+1)2=﹣4考点:解一元二次方程-配方法.分析:在本题中,把常数项﹣3移项后,应该在左右两边同时加上一次项系数﹣2的一半的平方.解答:解:把方程x2﹣2x﹣3=0的常数项移到等号的右边,得到x2﹣2x=3,方程两边同时加上一次项系数一半的平方,得到x2﹣2x+1=4,配方得(x﹣1)2=4.故选:A.点评:本题考查了解一元二次方程﹣﹣配方法.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.5.如图,⊙O为正五边形ABCDE的外接圆,⊙O的半径为2,则的长为()A.B.C.D.考点:弧长的计算.分析:利用正五边形的性质得出中心角度数,进而利用弧长公式求出即可.解答:解:如图所示:∵⊙O为正五边形ABCDE的外接圆,⊙O的半径为2,∴∠AOB==72°,∴的长为:=π.故选:D.点评:此题主要考查了弧长公式应用,得出圆心角度数是解题关键.6.如图,AB是⊙O的直径,CD是⊙O的弦,∠ABD=59°,则∠C等于()A.29°B.31°C.59°D.62°考点:圆周角定理.分析:由AB是⊙O的直径,根据直径所对的圆周角是直角,求得∠ADB=90°,继而求得∠A的度数,然后由圆周角定理,求得∠C的度数.解答:解:∵AB是⊙O的直径,∴∠ADB=90°,∵∠ABD=59°,∴∠A=90°﹣∠ABD=31°,∴∠C=∠A=31°.故选B.点评:此题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.此题难度不大,注意掌握数形结合思想的应用.7.已知二次函数y=x2﹣4x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2﹣4x+m=0的两个实数根是()A.x1=1,x2=﹣1B.x1=﹣1,x2=2C.x1=﹣1,x2=0D.x1=1,x2=3考点:抛物线与x轴的交点.分析:根据抛物线与x轴交点的性质和根与系数的关系进行解答.解答:解:∵二次函数y=x2﹣4x+m(m为常数)的图象与x轴的一个交点为(1,0),∴关于x的一元二次方程x2﹣4x+m=0的一个根是x=1.∴设关于x的一元二次方程x2﹣4x+m=0的另一根是t.∴1+t=4,解得t=3.即方程的另一根为3.故选:D.点评:本题考查了抛物线与x轴的交点.注意二次函数解析式与一元二次方程间的转化关系.8.如图,C是半圆O的直径AB上的一个动点(不与A,B重合),过C作AB的垂线交半圆于点D,以点D,C,O为顶点作矩形DCOE.若AB=10,设AC=x,矩形DCOE的面积为y,则下列图象中能表示y与x的函数关系的图象大致是()A.B.C.D.考点:动点问题的函数图象.分析:按点C在半径OA或半径OB上两种情况分类讨论;首先运用射影定理求出DC的长度,借助矩形的面积公式即可求得y与x的函数关系.解答:解:根据题意结合图形,
本文标题:【解析版】北京市海淀区2014-2015学年九年级上期中数学试卷
链接地址:https://www.777doc.com/doc-7495587 .html