您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2017秋人教版九年级数学上册期中检测题含答案
期中检测题(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.已知x=2是一元二次方程(m-2)x2+4x-m2=0的一个根,则m的值为(C)A.2B.0或2C.0或4D.02.(2016·葫芦岛)下列一元二次方程中有两个相等实数根的是(D)A.2x2-6x+1=0B.3x2-x-5=0C.x2+x=0D.x2-4x+4=03.(2017·玉林模拟)关于x的一元二次方程x2-4x-m2=0有两个实数根x1,x2,则m2(1x1+1x2)=(D)A.m44B.-m44C.4D.-44.若抛物线y=(x-m)2+(m+1)的顶点在第一象限,则m的取值范围为(B)A.m>2B.m>0C.m>-1D.-1<m<05.如图,在长70m,宽40m的矩形花园中,欲修宽度相等的观赏路(阴影部分),要使观赏路面积占总面积的18,则路宽x应满足的方程是(B)A.(40-x)(70-x)=350B.(40-2x)(70-3x)=2450C.(40-2x)(70-3x)=350D.(40-x)(70-x)=24506.把二次函数y=12x2+3x+52的图象向右平移2个单位后,再向上平移3个单位,所得的函数图象的顶点是(C)A.(-5,1)B.(1,-5)C.(-1,1)D.(-1,3)7.已知点A(-3,y1),B(2,y2),C(3,y3)在抛物线y=2x2-4x+c上,则y1,y2,y3的大小关系是(B)A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y2>y3>y18.若抛物线y=x2-2x+c与y轴的交点为(0,-3),则下列说法不正确的是(C)A.抛物线开口向上B.抛物线的对称轴是直线x=1C.当x=1时,y的最大值为-4D.抛物线与x轴的交点为(-1,0),(3,0)9.在同一坐标系内,一次函数y=ax+b与二次函数y=ax2+8x+b的图象可能是(C)10.(2016·达州)如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(-1,0),与y轴的交点B在(0,-2)和(0,-1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc0;②4a+2b+c0;③4ac-b28a;④13a23;⑤bc.其中正确的是(D)A.①③B.①③④C.②④⑤D.①③④⑤二、填空题(每小题3分,共24分)11.方程2x2-1=3x的二次项系数是__2__,一次项系数是__-3__,常数项是__-1__.12.把二次函数y=x2-12x化为形如y=a(x-h)2+k的形式为__y=(x-6)2-36__.13.已知抛物线y=ax2+bx+c过(-1,1)和(5,1)两点,那么该抛物线的对称轴是直线__x=2__.14.已知整数k<5,若△ABC的边长均满足关于x的方程x2-3kx+8=0,则△ABC的周长是__6或12或10__.15.与抛物线y=x2-4x+3关于y轴对称的抛物线的解析式为__y=x2+4x+3__.16.已知实数m,n满足3m2+6m-5=0,3n2+6n-5=0,且m≠n,则nm+mn=__-225__.17.如图,四边形ABCD是矩形,A,B两点在x轴的正半轴上,C,D两点在抛物线y=-x2+6x上,设OA=m(0<m<3),矩形ABCD的周长为l,则l与m的函数解析式为__l=-2m2+8m+12__.18.如图,在水平地面点A处有一网球发射器向空中发射网球,网球飞行路线是一条抛物线,在地面上落点为B,有人在直线AB上点C(靠点B一侧)竖直向上摆放若干个无盖的圆柱形桶.试图让网球落入桶内,已知AB=4米,AC=3米,网球飞行最大高度OM=5米,圆柱形桶的直径为0.5米,高为0.3米(网球的体积和圆柱形桶的厚度忽略不计).当竖直摆放圆柱形桶至少__8__个时,网球可以落入桶内.三、解答题(共66分)19.(8分)用适当的方法解方程:(1)x2-4x+2=0;(2)(2x-1)2=x(3x+2)-7.解:x1=2+2,x2=2-2解:x1=2,x2=420.(6分)如图,已知抛物线y1=-2x2+2与直线y2=2x+2交于A,B两点.(1)求A,B两点的坐标;(2)若y1>y2,请直接写出x的取值范围.解:(1)A(-1,0),B(0,2)(2)-1<x<021.(7分)已知关于x的一元二次方程x2-(2k+1)x+k2+k=0.(1)求证:方程有两个不相等的实数根;(2)若△ABC的两边AB,AC的长是这个方程的两个实数根,第三边BC的长为5,当△ABC是等腰三角形时,求k的值.解:(1)∵Δ=(2k+1)2-4(k2+k)=1>0,∴方程有两个不相等的实数根(2)一元二次方程x2-(2k+1)x+k2+k=0的解为x1=k,x2=k+1,当AB=k,AC=k+1,且AB=BC时,△ABC是等腰三角形,则k=5;当AB=k,AC=k+1,且AC=BC时,△ABC是等腰三角形,则k+1=5,解得k=4,所以k的值为5或422.(7分)已知抛物线y=ax2+bx+c与x轴交于点A(1,0),B(3,0),且过点C(0,-3).(1)求抛物线的解析式和顶点坐标;(2)请你写出一种平移的方法,使平移后抛物线的顶点落在直线y=-x上,并写出平移后抛物线的解析式.解:(1)抛物线解析式为y=-x2+4x-3,即y=-(x-2)2+1,∴顶点坐标(2,1)(2)先向左平移2个单位,再向下平移1个单位,得到的抛物线的解析式为y=-x2,平移后抛物线的顶点为(0,0)落在直线y=-x上23.(8分)(2016·济宁)某地2014年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2016年在2014年的基础上增加投入资金1600万元.(1)从2014年到2016年,该地投入异地安置资金的年平均增长率为多少?(2)在2016年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?解:(1)设该地投入异地安置资金的年平均增长率为x,根据题意得1280(1+x)2=1280+1600,解得x1=0.5,x2=-2.5(舍去),则所求年平均增长率为50%(2)设今年该地有a户享受到优先搬迁租房奖励,根据题意得1000×8×400+(a-1000)×5×400≥5000000,解得a≥1900,则今年该地至少有1900户享受到优先搬迁租房奖励24.(8分)如图,已知二次函数经过点B(3,0),C(0,3),D(4,-5).(1)求抛物线的解析式;(2)求△ABC的面积;(3)若P是抛物线上一点,且S△ABP=12S△ABC,这样的点P有几个?请直接写出它们的坐标.解:(1)y=-x2+2x+3(2)由题意得-x2+2x+3=0,解得x1=-1,x2=3,∴A(-1,0),∵AB=4,OC=3,∴S△ABC=12×4×3=6(3)点P有4个,坐标为(2+102,32),(2-102,32),(2+222,-32),(2-222,-32)25.(10分)大学毕业生小王响应国家“自主创业”的号召,利用银行小额无息贷款开办了一家饰品店,该店购进一种今年新上市的饰品进行销售,饰品的进价为每件40元,售价为每件60元,每月可卖出300件.市场调查反映:调整价格时,售价每涨1元每月要少卖10件;售价每下降1元每月要多卖20件,为了获得更大的利润,现将饰品售价调整为60+x(元/件)(x>0即售价上涨,x<0即售价下降),每月饰品销量为y(件),月利润为w(元).(1)直接写出y与x之间的函数解析式;(2)如何确定销售价格才能使月利润最大?求最大月利润;(3)为了使每月利润不少于6000元应如何控制销售价格?解:(1)由题意可得y=300-10x(0≤x≤30)300-20x(-20≤x<0)(2)由题意可得w=(20+x)(300-10x)(0≤x≤30),(20+x)(300-20x)(-20≤x<0),即w=-10(x-5)2+6250(0≤x≤30),-20(x+52)2+6125(-20≤x<0),由题意可知x应取整数,故-20≤x0中,当x=-2或x=-3时,w最大=6120;0≤x≤30中,当x=5时,w最大=6250,故当销售价格为65元时,利润最大,最大利润为6250元(3)由题意w≥6000,令w=6000,即6000=-10(x-5)2+6250,6000=-20(x+52)2+6125,解得x1=10,x2=0,x3=-5,∴-5≤x≤10,故将销售价格控制在55元到70元之间(含55元和70元)才能使每月利润不少于6000元26.(12分)如图,在平面直角坐标系xOy中,A,B为x轴上两点,C,D为y轴上的两点,经过点A,C,B的抛物线的一部分C1与经过点A,D,B的抛物线的一部分C2组合成一条封闭曲线,我们把这条封闭曲线称为“蛋线”.已知点C的坐标为(0,-32),点M是抛物线C2:y=mx2-2mx-3m(m<0)的顶点.(1)求A,B两点的坐标;(2)“蛋线”在第四象限上是否存在一点P,使得△PBC的面积最大?若存在,求出△PBC面积的最大值;若不存在,请说明理由;(3)当△BDM为直角三角形时,求m的值.解:(1)y=mx2-2mx-3m=m(x-3)(x+1),∵m≠0,∴当y=0时,x1=-1,x2=3,∴A(-1,0),B(3,0)(2)C1:y=12x2-x-32.如图,过点P作PQ∥y轴,交BC于Q,由B,C的坐标可得直线BC的解析式为y=12x-32.设P(x,12x2-x-32),则Q(x,12x-32),PQ=12x-32-(12x2-x-32)=-12x2+32x,S△PBC=12PQ·OB=12×(-12x2+32x)×3=-34(x-32)2+2716,当x=32时,S△PBC有最大值,S最大=2716,此时12×(32)2-32-32=-158,∴P(32,-158)(3)y=mx2-2mx-3m=m(x-1)2-4m,顶点M的坐标为(1,-4m).当x=0时,y=-3m,∴D(0,-3m).又B(3,0),∴DM2=(0-1)2+(-3m+4m)2=m2+1,MB2=(3-1)2+(0+4m)2=16m2+4,BD2=(3-0)2+(0+3m)2=9m2+9.当△BDM为直角三角形时,有DM2+BD2=MB2或DM2+MB2=BD2,①DM2+BD2=MB2时,有m2+1+9m2+9=16m2+4,解得m=-1(∵m<0,∴m=1舍去);②DM2+MB2=BD2时,有m2+1+16m2+4=9m2+9,解得m=-22(m=22舍去).综上,m=-1或-22时,△BDM为直角三角形
本文标题:2017秋人教版九年级数学上册期中检测题含答案
链接地址:https://www.777doc.com/doc-7495731 .html