您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 北京市XX中学2018-2019学年九年级上数学期中模拟试卷(含答案)
2018-2019学年度(上)九年级数学期中模拟卷(含答案)一、选择题(每小题3分,共30分)1.下列四个图形中,不是中心对称图形的是(C)2.把方程x2-12x+33=0化成(x+m)2=n的形式,则m,n的值是CA.6,3B.-6,-3C.-6,3D.6,-33.将y=x2+4x+1化为y=a(x-h)2+k的形式,h,k的值分别为(B)A.2,-3B.-2,-3C.2,-5D.-2,-54.已知点A(x-2,3)与点B(x+4,y-5)关于原点对称,则yx的值是BA.2B.C.4D.85.某商品原价800元,连续两次降价a%后售价为578元,下列所列方程正确的是(B)A.800(1+a%)2=578B.800(1-a%)2=578C.800(1-2a%)=578D.800(1-a2%)=5786.二次函数y=ax2+bc+c的图象如图所示,则下列判断中错误的是BA.图象的对称轴是直线x=-1B.当x-1时,y随x的增大而减小C.当-3x1时,y0D.一元二次方程ax2+bx+c=0的两个根是-3,17.把一个物体以初速度v0(米/秒)竖直向上抛出,在不计空气阻力的情况下,物体的运动路线是一条抛物线,且物体的上升高度h(米)与抛出时间t(秒)之间满足:h=v0t-12gt2(其中g是常数,取10米/秒2).某时,小明在距地面2米的O点,以10米/秒的初速度向上抛出一个小球,抛出2.1秒时,该小球距地面的高度是(C)A.1.05米B.-1.05米C.0.95米D.-0.95米8.黄山市某塑料玩具生产公司,为了减少空气污染,国家要求限制塑料玩具生产,这样有时企业会被迫停产,经过调研预测,它一年中每月获得的利润y(万元)和月份n之间满足函数关系式y=-n2+14n-24,则企业停产的月份为A.2月和12月B.2月至12月C.1月D.1月、2月和12月9.抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=-1,与x轴的一个交点A在点(-3,0)和(-2,0)之间,其部分图象如图所示,则下列4个结论:①b2-4ac<0;②2a-b=0;③a+b+c<0;④点M(x1,y1),N(x2,y2)在抛物线上,若x1<x2,则y1≤y2.其中正确结论的个数是(B)A.1个B.2个C.3个D.4个10.如图,直线y=kx+b(k≠0)与抛物线y=ax2(a≠0)交于A,B两点,且点A的横坐标是-2,点B的横坐标是3,则以下结论:B①抛物线y=ax2(a≠0)的图象的顶点一定是原点;②x0时,直线y=kx+b(k≠0)与抛物线y=ax2(a≠0)的函数值都随着x的增大而增大;③AB的长度可以等于5;④△OAB有可能成为等边三角形;⑤当-3x2时,ax2+kxb,其中正确的结论是A.①②④B.①②⑤C.②③④D.③④⑤二、填空题(每小题3分,共18分)11.如果关于x的一元二次方程2x(kx-4)-x2+6=0没有实数根,那么k的最小整数值是2.12.在平面直角坐标系内,若点P(-1,p)和点Q(q,3)关于原点O对称,则pq的值为__-3__.13.如图,一个拱形桥架可以近似看作是由等腰梯形ABD8D1和其上方的抛物线D1OD8组成.若建立如图所示的直角坐标系,跨度AB=44米,∠A=45°,AC1=4米,点D2的坐标为(-13,-1.69),则桥架的拱高OH=7.24米.14.已知关于x的一元二次方程x2+ax+b=0有一个非零根-b,则a-b的值为__1__.15.如图,在等腰直角△ABC中,AC=BC,∠ACB=90°,点O分斜边AB为BO∶OA=1∶3,将△BOC绕C点顺时针方向旋转到△AQC的位置,则∠AQC=__105°__.16.在如图所示的平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1与△OA1B1关于点B1成中心对称,再作△B2A3B3与△B2A2B1关于点B2成中心对称,如此作下去,则△B2nA2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是(4n+1,√).三、解答题(共72分)17.(8分)解下列方程:(1)2x2-x=1;(2)x2+4x+2=0.【解析】(1)x1=-12,x2=1.(2)x1=-2+2,x2=-2-2.18.按要求解方程.(1)x2+3x+1=0(公式法);解:x1=-√,x2=--√.(2)(x-3)2+4x(x-3)=0(因式分解法).解:x1=3,x2=.19.(8分)如图,正方形ABCD的边长为6,E,F分别是AB,BC边上的点,且∠EDF=45°,将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM;(2)当AE=2时,求EF的长.【解析】(1)∵△DAE逆时针旋转90°得到△DCM,∴∠FCM=∠FCD+∠DCM=180°,∴F,C,M三点共线,∴DE=DM,∠EDM=90°,∴∠EDF+∠FDM=90°.∵∠EDF=45°,∴∠FDM=∠EDF=45°,∴△DEF≌△DMF(SAS),∴EF=MF.(2)设EF=MF=x,∵AE=CM=2,且BC=6,20.已知y=(m-2)-+3x+6是二次函数,求m的值,并判断此抛物线的开口方向,写出对称轴及顶点坐标.解:∵y=(m-2)-+3x+6是二次函数,∴m-2≠0且m2-m=2,解得m=-1.将m=-1代入,得y=-3x2+3x+6.抛物线开口向下,对称轴为x=--,将x=代入得y=,∴抛物线的顶点坐标为(,).21.(8分)已知关于x的方程x2-(2m+1)x+m(m+1)=0.(1)求证:方程总有两个不相等的实数根;(2)设方程的两根分别为x1,x2,求x21+x22的最小值.【解析】(1)∵Δ=[-(2m+1)]2-4m(m+1)=1>0,∴方程总有两个不相等的实数根.(2)∵方程的两根分别为x1,x2,∴x1+x2=2m+1,x1·x2=m(m+1),∴x21+x22=(x1+x2)2-2x1·x2=(2m+1)2-2m(m+1)=2m2+2m+1=2(m+12)2+12,∴x21+x22的最小值为12.22.(8分)如图,矩形ABCD的长AD=5cm,宽AB=3cm,长和宽都增加xcm,那么面积增加ycm2.(1)写出y与x的函数关系式;(2)当增加的面积y=20cm2时,求相应的x是多少?【解析】(1)由题意可得(5+x)(3+x)-3×5=y,化简得:y=x2+8x.(2)把y=20代入解析式y=x2+8x中,得x2+8x-20=0,解得x1=2,x2=-10(舍去).∴当增加的面积为20cm2时,相应x为2cm.23.为打造“文化太湖,书香圣地”,太湖中学的学生积极开展“图书飘扬”活动,让全体师生创美好,校团委学生处在对上学期学生借阅登记簿进行统计时发现,在4月份有1000名学生借阅了名著类书籍,5月份人数比4月份增加10%,6月份全校借阅名著类书籍人数比5月份增加340人.(1)求6月份全校借阅名著类书籍的学生人数;(2)列方程求从4月份到6月份全校借阅名著类书籍的学生人数的平均增长率.解:(1)由题意,得5月份借阅了名著类书籍的人数是1000×(1+10%)=1100(人),则6月份借阅了名著类书籍的人数为1100+340=1440(人).(2)设平均增长率为x.1000(1+x)2=1440,解得x=0.2.答:从4月份到6月份全校借阅名著类书籍的学生人数的平均增长率为20%24.(8分)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(-3,2),B(0,4),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C1,平移△ABC,对应点A2的坐标为(0,-4),画出平移后对应的△A2B2C2;(2)若将△A1B1C1绕某一点旋转可以得到△A2B2C2,请直接写出旋转中心P点的坐标.25.已知二次函数y=-x2+bx+c的图象经过A(2,0),B(0,-6)两点.(1)求这个二次函数的解析式;(2)设该二次函数图象的对称轴与x轴交于点C,连接BA,BC,求△ABC的面积和周长.解:(1)二次函数的解析式是y=-x2+4x-6.(2)∵对称轴x=-=4,∴C点的坐标是(4,0),∴AC=2,OB=6,AB=2√,BC=2√,∴S△ABC=AC·OB=×2×6=6,△ABC的周长=AC+AB+BC=2+2√+2√.
本文标题:北京市XX中学2018-2019学年九年级上数学期中模拟试卷(含答案)
链接地址:https://www.777doc.com/doc-7496747 .html