您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 天津市XX中学2017届九年级上第二次月考数学试题附答案
天津XX中学2016-2017-1学年度九年级二月考数学学科试卷一、选择题(每题3分,共36分)1.剪纸是扬州的非物质文化遗产之一,下列剪纸作品中是中心对称图形的是()A.B.C.D.2.已知两圆半径分别是方程x2﹣7x+10=0的两根,两圆的圆心距为6,则两圆的位置关系是()A.相交B.内切C.外切D.外离3.下列事件:(1)沈阳每年都会刮风;(2)任意买一张电影票,座位号是奇数;(3)在如图的转盘中,转动转盘,转盘停止转动后,指针落在白色区域;(4)掷一枚均匀的硬币,结果是正面向上;(5)小红买彩票中奖.其中确定事件和不确定事件的个数分别是()A.3,2B.4,1C.2,3D.1,44.当k>0时,反比例函数y=和一次函数y=kx+2的图象大致是()A.B.C.D.5.若关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是()A.k<5B.k<5且k≠1C.k≤5且k≠1D.k>56.如图,已知钝角三角形ABC,将△ABC绕点A按逆时针方向旋转110°得到△AB′C′,连接BB′,若AC′∥BB′,则∠CAB′的度数为()A.55°B.65°C.75°D.85°7.如图,O为坐标原点,边长为的正方形OABC的顶点A在x轴的正半轴上,将正方形OABC绕顶点O顺时针旋转75°,使点B落在某抛物线的图象上,则该抛物线的解析式可能为()A.y=x2B.y=﹣x2C.y=﹣x2D.y=﹣3x238.若点A(-5,y1),B(-3,y2),C(2,y3)在反比例函数y的图象上,则y1,xy2,y3的大小关系是()A.y1y3y2B.y1y2y3C.y3y2y1D.y2y1y3+9.如图,正六边形ABCDEF内接于圆O,圆O的半径为6,则这个正六边形的边心距OM和的长分别为()A.3、B.、πC.3、D.3、2π10.如图所示,点E是平行四边形ABCD的边CB延长线上的点,AB与DE相交于点F,则图中相似三角形共有()对.A.5B.4C.3D.211.如图,在扇形AOB中,∠AOB=90°,半径OA=6,将扇形AOB沿过点B的直线折叠,点O恰好落在弧AB上点D处,折痕交OA于点C,则整个阴影部分的面积为()A.9π﹣9B.9π﹣6C.9π﹣18D.9π﹣12第7题第9题第10题第11题12.如图,△ABC中,边BC=12,高AD=6.矩形MNPQ的边在BC上,顶点P在AB上,顶点N在AC上,若S矩形MNPQ=y,则y与x的关系式为()A.y=6﹣x(0<x<12)B.y=﹣x2+6x(0<x<12)C.y=2x2﹣12x(0<x<12)D.y=x2+6x(0<x<12)二、填空题(每题3分,共18分)13.如图,已知圆锥的高为,高所在直线与母线的夹角为30°,圆锥的侧面积为.第13题第14题第15题14.如图,在Rt△ABC中,∠C=90°,∠B=70°,△ABC的内切圆⊙O与边AB、BC、CA分别相切于点D、E、F,则∠DEF的度数为_°.15.如图,在4×4正方形网格中,有3个小正方形已经涂黑,若再涂黑任意一个白色的小正方形(每一个白色的小正方形被涂黑的可能性相同),使新构成的黑色部分的图形是轴对称图形的概率是_.16.若二次函数y=x2+bx﹣5的图象的对称轴是经过点(2,0)且平行于y轴的直线,则关于x的方程x2+bx=5的解为___.17.如图,在等边△ABC中,O为BC边上一点,E为AC边上一点,且∠ADE=60°,BD=3,CE=2,则AB的长为.18.如图,已知A、B是线段MN上的两点,MN=4,MA=1,MB1,以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,使M、N两点重合成一点C,构成△ABC,设AB=x(1)求x的取值范围是,(2)△ABC的最大面积是.三、解答题(7道题共66分)19.如图,一次函数y=kx+b与反比例函数y=的图象交于A(n,3),B(3,﹣1)两点.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式kx+b>的解集;(3)过点B作BC⊥x轴,垂足为C,求△ABC的面积S.20.甲乙两人玩数字游戏,先由甲写一个数,再由乙猜甲写的数:要求:他们写和猜的数字只在1,2、3、4,5这五个数字中:(1)请用列表法或树状图表示出他们写和猜的所有情况;(2)如果他们写和猜的数字相同,则称他们“心灵相通”:求他们“心灵相通”的概率(3)如果甲写的数字记为a,把乙猜的数字记为b,当他们写和猜的数字满足|a﹣b|≤1,则称他们“心有灵犀”,求他们“心有灵犀”的概率.21.某企业2014年盈利1500万元,2016年克服全球金融危机的不利影响,仍实现盈利2160万元.从2014年到2016年,如果该企业每年盈利的年增长率相同,求:(1)该企业2015年盈利多少万元?(2)若该企业盈利的年增长率继续保持不变,预计2017年盈利多少万元?22.一块三角形废料如图所示,∠A=30°,∠C=90°,AB=12.用这块废料剪出一个矩形CDEF,其中,点D、E、F分别在AC、AB、BC上.要使剪出的矩形CDEF面积最大,点E应选在何处?23.如图,C是以AB为直径的⊙O上一点,过O作OE⊥AC于点E,过点A作⊙O的切线交OE的延长线于点F,连接CF并延长交BA的延长线于点P.(1)求证:PC是⊙O的切线.(2)若AF=1,OA=,求PC的长.24.在平面直角坐标系中,O为原点,点A(4,0),点B(0,3)把△ABO绕点B逆时针旋转,得△A’BO’,点A,O旋转后的对应点为A’,O’.记旋转角为α.(Ⅰ)如图①,若α=90o,求AA’的长;(Ⅱ)如图②,若α=120o,求点O’的坐标;(Ⅲ)在(Ⅱ)的条件下,边OA上的一点P旋转后的对应点为P’,当O’P+BP’取得最小值时,求点P’的坐标(直接写出结果即可).25.如图1,直线与x轴、y轴分别交于B、C两点,经过B、C两点的抛物线与x轴的另一交点坐标为A(﹣1,0).(1)求B、C两点的坐标及该抛物线所对应的函数关系式;(2)P在线段BC上的一个动点(与B、C不重合),过点P作直线a∥y轴,交抛物线于点E,交x轴于点F,设点P的横坐标为m,△BCE的面积为S.①求S与m之间的函数关系式,并写出自变量m的取值范围;②求S的最大值,并判断此时△OBE的形状,说明理由;(3)过点P作直线b∥x轴(图2),交AC于点Q,那么在x轴上是否存在点R,使得△PQR为等腰直角三角形?若存在,请求出点R的坐标;若不存在,请说明理由.2一、选择题参考答案1-5CADCB6-10CBDDB11-12DB二、填空题13.2π14.8015.3/1316.-1或517.918.(1)1x2(2)2三、解答题19.解:(1)将点B(3,﹣1)带入反比例函数解析式中,得:﹣1=,解得:m=﹣3,∴反比例函数解析式为∵点A(n,3)在反比例函数的图象上,∴3=﹣,解得:n=﹣1,即点A的坐标为(﹣1,3).将点A(﹣1,3),点B(3,﹣1)带入到一次函数解析式中,得:,解得:.∴一次函数解析式为y=﹣x+2.(2)观察函数图象发现:当x<﹣1或0<x<3时,一次函数图象在反比例函数图象上方,∴不等式kx+b>的解集为x<﹣1或0<x<3.(3)∵BC⊥x轴,B(3,﹣1),∴BC=1,∵A(﹣1,3),∴S△ABC=BC•(xB﹣xA)=×1×4=2.(1)如图所示:(2)根据图表即可得出,他们写和猜的数字相同的情况一共用5种,则他们“心灵相通”的概率为:=.(3)根据甲写的数字记为a,把乙猜的数字记为b,当他们写和猜的数字满足|a﹣b|≤1,则称他们“心有灵犀”,满足条件的事件是|a﹣b|≤1,可以列举出所有的满足条件的事件,①若a=1,则b=1,2;②若a=2,则b=1,2,3;③若a=3,则b=2,3,4;④若a=4,则b=3,4,5;⑤若a=5,则b=4,5;总上可知共有2+3+3+3+2=13种结果,∴他们“心有灵犀”的概率为:.21.解:(1)设每年盈利的年增长率为x,根据意,得1500(1+x)2=2160解得:x1=0.2,x2=﹣2.2(不合题意,舍去)∴该企业2011年盈利为:1500(1+0.2)=1800万元.答:2011年该企业盈利1800万元;(2)由题意,得2160(1+0.2)=2592万元答:预计2013年该企业盈利2592万元.22.解:在Rt△ABC中,∠A=30°,AB=12,∴BC=6,AC=AB•cos30°=.∵四边形CDEF是矩形,∴EF∥AC.∴△BEF∽△BAC.∴.设AE=x,则BE=12﹣x..甲乙1234512345(1,1)(2,1)(3,1)(4,1)(5,1)(1,2)(2,2,)(3,2)(4,2)(5,2)(1,3)(2,3)(3,3)(4,3)(5,3)(1,4)(2,4)(3,4)(4,4)(5,4)(1,5)(2,5)(3,5)(5,4)(5,5)20.解:在Rt△ADE中,.矩形CDEF的面积S=DE•EF=•=(0<x<6).当时,S有最大值.∴点E应选在AB的中点处.23.解:(1)证明:连接OC,∵OE⊥AC,∴AE=CE,FA=FC,∴∠FAC=∠FCA,∵OA=OC(圆的半径相等),∴∠OAC=∠OCA,∴∠OAC+∠FAC=∠OCA+∠FCA,即∠FAO=∠FCO,∵FA与⊙O相切,且AB是⊙O的直径,∴FA⊥AB,∴∠FCO=∠FAO=90°,∵CO是半径,∴PC是⊙O的切线;(2)解:∵PC是⊙O的切线,∴∠PCO=90°,又∵∠FPA=∠OPC,∠PAF=90°,∴△PAF∽△PCO,∴∵CO=OA=,AF=1,∴PC=PA,设PA=x,则PC=.在Rt△PCO中,由勾股定理得:,解得:,∴PC=2×=.25.解:(1)在y=﹣x+2中,令y=0,得﹣x+2=0,解得x=3,令x=0,得y=2,∴B(3,0),C(0,2),设抛物线y=ax2+bx+c(a≠0),∵抛物线经过点A(﹣1,0)、B(3,0)、C(0,2),∴,解得,24.解:∴抛物线解析式为,y=﹣x2+x+2;(2)①∵点P的横坐标为m,过点P作直线a∥y轴,∴EP=﹣m2+m+2﹣(﹣m+2)=﹣m2+2m,∴△BCE的面积为S=EP•|xB﹣xC|=×(﹣m2+2m)×|3﹣0|=﹣m2+3m,∵P在线段BC上的一个动点(与B、C不重合),∴0<m<3,∴S与m之间的函数关系式为:S=﹣m2+3m(0<m<3);②∵S=﹣m2+3m=﹣(m﹣)2+,∴当m=时,S最大值=,当m=时,P是BC的中点,OE=BE,EF=,∴△OBE是等腰三角形;(3)令y=0,则﹣x2+x+2=0,整理得,x2﹣2x﹣3=0,解得x1=﹣1,x2=3,∴点A(﹣1,0),易得直线AC的解析式为y=2x+2,∵点P的横坐标为m,∴点P的纵坐标为﹣m+2,∴点Q的纵坐标为﹣m+2,代入直线AC得,2x+2=﹣m+2,解得x=﹣m,∴PQ=m﹣(﹣m)=m,①当PQ是等腰直角三角形△PQR的直角边时,m=﹣m+2,解得m=1,∴QR是直角边时,点R1(﹣,0),PQ是直角边时,点R2(1,0),②PQ是等腰直角三角形△PQR的斜边时,×m=﹣m+2,解得m=,∴PQ=m=×=2,OR=m﹣PQ=﹣×2=,∴点R3(,0),综上所述,x轴上存在点R(﹣,0)或(1,0)或(,0),使得△PQR为等腰直角三角形.
本文标题:天津市XX中学2017届九年级上第二次月考数学试题附答案
链接地址:https://www.777doc.com/doc-7500294 .html