您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 《三角形内角和定理》平行线的证明PPT课件
学习目标1、通过拼图验证三角形内角和。2、能理解和掌握三角形内角和定理的证明过程。3、能灵活应用三角形内角和定理进行简单的计算和推理证明。创设情境激发情趣:内角三兄弟之争在一个直角三角形里住着三个内角,平时,它们三兄弟非常团结可是有一天,老二突然不高兴,发起脾气来,它指着老大说:“你凭什么度数最大,我也要和你一样大!”“不行啊!”老大说:“这是不可能的,否则,我们这个家就再也围不起了……”“为什么?”老二很纳闷。同学们,你们知道其中的道理吗?命题:三角形的三个内角和是180°你能验证这个命题吗?验证:三角形的三个内角和是180°图1图2图3ABCCBAABBCCBAB结论:三角形的内角和等于1800.证明:过点A作EF∥BC则∠B=∠2(两直线平行,内错角相等)同理∠C=∠1因为∠2+∠1+∠BAC=1800(平角定义)所以∠B+∠C+∠BAC=1800(等量代换)已知:△ABC.ABCEF求证:∠A+∠B+∠C=180°结论:三角形的内角和等于1800.所以∠B+∠BAC+∠C=180°(等量代换)已知:△ABC.求证:∠A+∠B+∠C=180°ABCL证明:过A作AE∥BC,则∠B=∠1(两直线平行,内错角相等)因为∠1+∠BAC+∠C=180°(两直线平行,同旁内角互补)结论:三角形的内角和等于1800.ABCL定理:三角形的三个内角和是180°一个三角形中能有两个直角吗?一个三角形中能有两个钝角吗?三个内角都能小于600吗?讨论(1)在△ABC中,∠A=35°,∠B=43°,则∠C=.(2)在△ABC中,∠C=90°,∠B=50°,则∠A=____。(3)在△ABC中,∠A=40°,∠A=2∠B,则∠C=____。10204001200你真棒!已知:三角形三个内角的度数之比为1:3:5,求这三个内角的度数。解:设三个内角度数分别为:x、3x、5x,x+3x+5x=180°解得x=20°所以三个内角度数分别为20°,60°,100°。由三角形内角和为180°得求出下列图中x的值:xxxx=600比比谁最快xxx=4502xx┐x=3003、如图,直线AB∥CD,在AB、CD外有一点P,连结PB、PD,交CD于E点。则∠B、∠D、∠P之间是否存在一定的大小关系?随堂练习☞ABCPDE他们是怎样的,并加以证明?证明:因为AB∥CD12所以∠1+∠B=1800(两直线平行,同旁内角互补)因为∠2+∠P+∠D=1800(三角形内角和定理)∠1=∠2(对顶角相等)所以∠B=∠P+∠D(等量代换)练习2.如图,求A1+A2+A3+A4+A5的度数。A2A1A5A3A421拓广探究回顾与小结本节课里你学到了什么???1、三角形内角和的定理:三角形三个内角的和等于180°2、通过思考、去探究、去总结三角形内角和的定理,并且发现要证明三角形三个内角的和等于180°需转化为:平角或两直线平行同旁内角和等于180°。3、三角形内角和的定理证明中,添加辅助线的实质是通过平行线来移动角。作业1.课本P76:1题(1)(2)(4)小题、2题(1)(2)小题、3题、4题;2.《配套练习》P31:练习三在这里,为了证明的需要,在原来的图形上自己加上的线叫做辅助线。在平面几何里,辅助线通常画成虚线。注意要说明所加辅助线的位置、名称和性质。思路总结:为了证明三角形三个内角的和为180°,通常应用转化思想。转化为:平角或两直线平行,同旁内角互补三角形内角和定理三角形内角和定理三角形三个内角的和等于1800.△ABC中,∠A+∠B+∠C=1800.∠A+∠B+∠C=1800的几种变形:∠A=1800–(∠B+∠C).∠B=1800–(∠A+∠C).∠C=1800–(∠A+∠B).∠A+∠B=1800-∠C.∠B+∠C=1800-∠A.∠A+∠C=1800-∠B.这里的结论,以后可以直接运用.三种语言☞ABC三角形按角的大小分类如下:三角形直角三角形:有一个角是直角的三角形。斜三角形锐角三角形:三个角都是锐角的三角形。钝角三角形:有一个角是钝角的三角形。我们可以按三角形内角的大小将三角形分为三类:锐角三角形:三个角都是锐角的三角形。直角三角形:有一个角是直角的三角形。钝角三角形:有一个内角是钝角的三角形。三角形蓝和三角形红见面了,蓝炫耀的说:“我的体积比你大,所以我的内角和也比你大!”红不服气的说:“那可不好说噢,你自己量量看!”蓝用量角器量了量自己的内角和,就不再说话了!同学们,你们知道其中的道理吗?问题1想一想1.平角的度数是180°2.两直线平行,同旁内角的和是180°从刚才拼角的过程你能想出证明的方法吗?3.邻补角的和是180°问题:有什么方法可以得到180°证明:在△ABC中∵∠A+∠B+∠C=180゜(三角形内角和定理)∠C=90゜(已知)∴∠A+∠B+90゜=180゜(等量代换)∴∠A+∠B=180゜-90゜=90゜(等式性质)即∠A+∠B=90゜ABC已知:在△ABC中,∠C=90゜求证:∠A+∠B=90゜随堂练习☞ABC演示下一页123三角形的三个内角和是多少?方法三:将各角沿着一边所在的直线折叠
本文标题:《三角形内角和定理》平行线的证明PPT课件
链接地址:https://www.777doc.com/doc-7502782 .html