您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 中考卷-2020中考数学试卷(解析版)(116)
1江苏省苏州市2020年中考数学试题一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B铅笔涂在答题卡相应位置上.1.在下列四个实数中,最小的数是()A.2B.13C.0D.3【答案】A【解析】【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【详解】解:根据实数大小比较的方法,可得-2<0<13<3,所以四个实数中,最小的数是-2.故选:A.【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.某种芯片每个探针单元的面积为20.00000164cm,0.00000164用科学记数法可表示为()A.51.6410B.61.6410C.716.410D.50.16410【答案】B【解析】【分析】绝对值小于1的数利用科学记数法表示的一般形式为a×10-n,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00000164=1.64×10-6,故选:B.【点睛】本题考查用科学记数法表示较小数的方法,写成a×10n的形式是关键.3.下列运算正确的是()A.236aaaB.33aaaC.325aaD.2242abab【答案】D【解析】【分析】根据幂的运算法则逐一计算可得.【详解】解:A、235aaa,此选项错误;B、32aaa,此选项错误;2C、326aa,此选项错误;D、2242abab,此选项正确;故选:D.【点睛】本题主要考查幂的运算,解题的关键是掌握幂的运算法则.4.如图,一个几何体由5个相同的小正方体搭成,该几何体的俯视图是()A.B.C.D.【答案】C【解析】【分析】根据组合体的俯视图是从上向下看的图形,即可得到答案.【详解】组合体从上往下看是横着放的三个正方形.故选C.【点睛】本题主要考查组合体的三视图,熟练掌握三视图的概念,是解题的关键.5.不等式213x的解集在数轴上表示正确的是()A.B.C.D.【答案】C【解析】【分析】先求出不等式的解集,再在数轴上表示出来即可.【详解】解:移项得,2x≤3+1,合并同类项得,2x≤4,系数化为1得,x≤2,在数轴上表示为:故选:C.【点睛】本题考查的是在数轴上表示不等式的解集,熟知“小于向左,大于向右,在表示解集时≥,≤要用实心圆点表示;<,>要用空心圆点表示”是解答此题的关键.36.某手表厂抽查了10只手表的日走时误差,数据如下表所示(单位:s):日走时误差0123只数3421则这10只手表的平均日走时误差(单位:s)是()A.0B.0.6C.0.8D.1.1【答案】D【解析】【分析】根据加权平均数的概念,列出算式,即可求解.【详解】由题意得:(0×3+1×4+2×2+3×1)÷10=1.1(s)故选D.【点睛】本题主要考查加权平均数,熟练掌握加权平均数的计算方法,是解题的关键.7.如图,小明想要测量学校操场上旗杆AB的高度,他作了如下操作:(1)在点C处放置测角仪,测得旗杆顶的仰角ACE;(2)量得测角仪的高度CDa;(3)量得测角仪到旗杆的水平距离DBb.利用锐角三角函数解直角三角形的知识,旗杆的高度可表示为()A.tanabB.sinabC.tanbaD.sinba【答案】A【解析】【分析】延长CE交AB于F,得四边形CDBF为矩形,故CF=DB=b,FB=CD=a,在直角三角形ACF中,利用CF的长和已知的角的度数,利用正切函数可求得AF的长,从而可求出旗杆AB的长.【详解】延长CE交AB于F,如图,4根据题意得,四边形CDBF为矩形,∴CF=DB=b,FB=CD=a,在Rt△ACF中,∠ACF=α,CF=b,tan∠ACF=AFCF∴AF=tantanCFACFb,AB=AF+BF=tanab,故选:A.【点睛】主要考查了利用了直角三角形的边角关系来解题,通过构造直角三角形,将实际问题转化为数学问题是解答此类题目的关键所在.8.如图,在扇形OAB中,已知90AOB,2OA,过AB的中点C作CDOA,CEOB,垂足分别为D、E,则图中阴影部分的面积为()A.1B.12C.12D.122【答案】B【解析】【分析】连接OC,易证CDOCEO△△,进一步可得出四边形CDOE为正方形,再根据正方形的性质求出边长即可求得正方形的面积,根据扇形面积公式得出扇形AOB的面积,最后根据阴影部分的面积等于扇形AOB的面积剪去正方形CDOE的面积就可得出答案.【详解】连接OC点C为AB的中点AOCBOC∴在CDO和CEO中90AOCBOCCDOCEOCOCOCDOCEOAAS△△,ODOECDCE又90CDOCEODOE5四边形CDOE为正方形2OCOA1ODOE=11=1CDOES正方形由扇形面积公式得2902==3602AOBS扇形==12CDOEAOBSSS阴影正方形扇形故选B.【点睛】本题考查了扇形面积的计算、正方形的判定及性质,熟练掌握扇形面积公式是解题的关键.9.如图,在ABC中,108BAC,将ABC绕点A按逆时针方向旋转得到ABC.若点B恰好落在BC边上,且ABCB,则C的度数为()A.18B.20C.24D.28【答案】C【解析】【分析】根据旋转的性质得出边和角相等,找到角之间的关系,再根据三角形内角和定理进行求解,即可求出答案.【详解】解:设C=x°.根据旋转的性质,得∠C=∠'C=x°,'AC=AC,'AB=AB.∴∠'ABB=∠B.∵ABCB,∴∠C=∠CA'B=x°.∴∠'ABB=∠C+∠CA'B=2x°.∴∠B=2x°.6∵∠C+∠B+∠CAB=180°,108BAC,∴x+2x+108=180.解得x=24.∴C的度数为24°.故选:C.【点睛】本题考查了三角形内角和定理,旋转的性质的应用及等腰三角形得性质.10.如图,平行四边形OABC的顶点A在x轴的正半轴上,点3,2D在对角线OB上,反比例函数0,0kykxx的图像经过C、D两点.已知平行四边形OABC的面积是152,则点B的坐标为()A.84,3B.9,32C.105,3D.2416,55【答案】B【解析】【分析】根据题意求出反比例函数解析式,设出点C坐标6,aa,得到点B纵坐标,利用相似三角形性质,用a表示求出OA,再利用平行四边形OABC的面积是152构造方程求a即可.【详解】解:如图,分别过点D、B作DE⊥x轴于点E,DF⊥x轴于点F,延长BC交y轴于点H∵四边形OABC是平行四边形∴易得CH=AF∵点3,2D在对角线OB上,反比例函数0,0kykxx的图像经过C、D两点∴236k即反比例函数解析式为6yx7∴设点C坐标为6,aa∵DEBF∴ODEOBF△△∴DEOEBFOF∴236OFa∴6392aOFa∴9OAOFAFOFHCaa,点B坐标为96,aa∵平行四边形OABC的面积是152∴96152aaa解得122,2aa(舍去)∴点B坐标为9,32故应选:B【点睛】本题是反比例函数与几何图形的综合问题,涉及到相似三角形的的性质、反比例函数的性质,解答关键是根据题意构造方程求解.二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上.11.使13x在实数范围内有意义的x的取值范围是__________.【答案】1x【解析】【分析】根据二次根式的被开方数是非负数,列出不等式,即可求解.【详解】∵x-1≥0,∴x≥1.故答案是:1x.【点睛】本题主要考查二次根式有意义的条件,掌握二次根式的被开方数是非负数,是解题的关键.12.若一次函数36yx的图像与x轴交于点,0m,则m__________.8【答案】2【解析】【分析】把点(m,0)代入y=3x-6即可求得m的值.【详解】解:∵一次函数y=3x-6的图象与x轴交于点(m,0),∴3m-6=0,解得m=2.故答案为:2.【点睛】本题考查了一次函数图象上点的坐标特征,图象上点的坐标适合解析式是解题的关键.13.一个小球在如图所示的方格地砖上任意滚动,并随机停留在某块地砖上.每块地砖的大小、质地完全相同,那么该小球停留在黑色区域的概率是___________.【答案】38【解析】【分析】先求出黑色方砖在整个地面中所占的比值,再根据其比值即可得出结论.【详解】解:∵由图可知,黑色方砖6块,共有16块方砖,∴黑色方砖在整个区域中所占的比值=63=168,∴小球停在黑色区域的概率是38;故答案为:38【点睛】本题考查的是几何概率,用到的知识点为:几何概率=相应的面积与总面积之比.14.如图,已知AB是O的直径,AC是O的切线,连接OC交O于点D,连接BD.若40C,则BÐ的度数是_________.9【答案】25【解析】【分析】先由切线的性质可得∠OAC=90°,再根据三角形的内角和定理可求出∠AOD=50°,最后根据“同弧所对的圆周角等于圆心角的一半”即可求出∠B的度数.【详解】解:∵AC是O的切线,∴∠OAC=90°∵40C,∴∠AOD=50°,∴∠B=12∠AOD=25°故答案为:25.【点睛】本题考查了切线的性质和圆周角定理,掌握圆周角定理是解题的关键.15.若单项式122mxy与单项式2113nxy是同类项,则mn___________.【答案】4【解析】【分析】根据同类项的定义:所含字母相同,相同字母的指数也相同的单项式是同类项.可列式子m-1=2,n+1=2,分别求出m,n的值,再代入求解即可.【详解】解:∵单项式122mxy与单项式2113nxy是同类项,∴m-1=2,n+1=2,解得:m=3,n=1.∴m+n=3+1=4.故答案为:4.【点睛】本题考查了同类项的概念,正确理解同类项的定义是解题的关键.16.如图,在ABC中,已知2AB,ADBC,垂足为D,2BDCD.若E是AD的中点,则EC_________.【答案】1【解析】10【分析】根据“两边对应成比例,夹角相等的两个三角形相似”证明△ADB∽△EDC,得2ABBDECDC,由AB=2则可求出结论.【详解】2BDDC2BDDCE为AD的中点,2ADDE,∴2ADDE,2BDADDCDE,ADBC90ADBEDCADBEDC2ABBDECDC2AB1EC故答案为:1.【点睛】此题主要考查了三角形相似的判定与性质,得出2BDADDCDE是解答此题的关键.17.如图,在平面直角坐标系中,点A、B的坐标分别为4,0、0,4,点3,Cn在第一象限内,连接AC、BC.已知2BCACAO,则n_________.【答案】145【解析】【分析】过点C作CD⊥y轴,交y轴于点D,则CD∥AO,先证CDE≌CDB(ASA),进而可得DE=DB=4-n,11再证AOE∽CDE,进而可得42434nn,由此计算即可求得答案.【详解】解:如图,过点C作CD⊥y轴,交y轴于点D,则CD∥AO,∴∠DCE=∠CAO,∵∠BCA=2∠CAO,∴∠BCA=2∠DCE,∴∠DCE=∠DCB,∵CD⊥y轴,∴∠CDE=∠CDB=90°,又∵CD=CD,∴CDE≌CDB(ASA),∴DE=DB,∵B(0,4),C(3,n),∴CD=3,OD=n,OB=4,∴DE=DB=OB-OD=4-n,∴OE=OD-DE=n-(4-n)=2n-4,∵A(-4,0),∴AO=4,∵CD∥AO
本文标题:中考卷-2020中考数学试卷(解析版)(116)
链接地址:https://www.777doc.com/doc-7512210 .html