您好,欢迎访问三七文档
第5讲利用几类经典的递推关系式求通项公式1.了解用通项公式表示数列的方法.2.掌握等差数列、等比数列的通项公式.3.能用等差数列、等比数列的基本思想求其他数列的通项公式.求数列通项的常用方法(1)利用观察法求数列的通项.(2)利用公式法求数列的通项:①等差、等比数列{an}的通项公式;②an=S1n=1,Sn-Sn-1n≥2.(3)应用迭加(迭乘、迭代)法求数列的通项:①an+1=an+f(n);②an+1=anf(n).(4)构造等差、等比数列求通项:①an+1=pan+q;②an+1=pan+qn;③an+1=pan+f(n);④an+2=pan+1+qan.1.在数列{an}中,a1=1,对所有的n≥2都有a1·a2·a3·…·an=n2,则a3=()A.94B.32C.25925D.162.在数列{an}中,若an+1=an2an+1,a1=1,则a6=()A.13B.113C.11D.111AD3.设等比数列{an}的公比q=2,前n项和为Sn,则S4a3=()A.2B.4C.154D.174C2n-1+14.已知数列{an}满足a1=2,an+1=2an-1,则an=_______.考点1递推关系形如“an+1=pan+q”的数列求通项例1:已知数列满足a1=78,且an+1=12an+13,n∈N*.(1)求证:an-23是等比数列;(2)求数列{an}的通项公式.(1)证明:由an+1=12an+13,得an+1-23=12an-23.又an-23≠0,∴an+1-23an-23=12.即数列an-23是等比数列,且公比为12,首项为a1-23.【规律方法】递推关系形如“an+1=pan+q”等价转化为an+1+λ=p(an+λ),利用待定系数法求出λ后,进而转化为等比数列.(2)解:由(1)知,an-23=a1-2312n-1,且a1=78.∴an=a1-2312n-1+23=52412n-1+23=5312n+2+23.【互动探究】1.已知在数列{an}中,a1=1,an+1=2an+3.求数列{an}的通项公式;解:∵an+1=2an+3,∴an+1+3=2(an+3).∴{an+3}是以2为公比的等比数列,其首项为a1+3=4.∴an+3=4×2n-1⇒an=2n+1-3.考点2递推关系形如“an+1=pan+f(n)”的数列求通项例2:在数列{an}中,a1=2,an+1=4an-3n+1,n∈N*.(1)证明:数列{an-n}是等比数列;(2)求数列{an}的前n项和Sn.(1)证明:由题设an+1=4an-3n+1,得an+1-(n+1)=4(an-n),n∈N*.又a1-1=1,∴数列{an-n}是以首项为1,公比为4的等比数列.(2)解:由(1)知,an-n=4n-1,于是数列{an}的通项公式为an=4n-1+n.∴数列{an}的前n项和Sn=1+4+42+…+4n-1+1+2+…+n=4n-13+nn+12.【规律方法】递推关系形如“an+1=pan+An+B”等价转化为an+1+An+1+B=pan+An+B,利用待定系数法求出A,B后,进而转化为等比数列.【互动探究】2.已知在数列{an}中,a1=12,an+1=12an+12n(n∈N*),求数列{an}的通项公式.解:令an+1+A(n+1)+B=12(an+An+B),即an+1=12an+12An-A(n+1)+12B-B=12an-12An-A-12B.比较系数,得-A=1,-A-12B=0.解得A=-1,B=2.∴an+1-(n+1)+2=12(an-n+2),且a1-1+2=32≠0.∴数列{an-n+2}是等比数列,其公比为12,首项为32.∴an-n+2=32×12n-1,即an=32n+n-2.考点3递推关系形如“an+1=pan+qn”的数列求通项例3:已知在数列{an}中,a1=1,an+1=2an+3n,求数列{an}的通项公式.解:方法一:∵an+1=2an+3n,∴an+12n=an2n-1+32n.令an2n-1=bn,则bn+1-bn=32n.∴bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1=32n-1+32n-2+32n-3+…+322+32+1=2×32n-2.∴an=2n-1bn=3n-2n.方法二:∵an+1=2an+3n,∴an+13n=23·an3n-1+1.令an3n-1=bn,则bn+1=23bn+1,转化为“an+1=pan+q”(解法略).【规律方法】递推关系形如“an+1=pan+qn”的数列求通项,在等式两边同时除以pn+1,得11nnap=nnap+1pnqp,然后累差迭加.【互动探究】3.在数列{an}中,a1=1,an+1=2an+2n.(2)求数列{an}的前n项和Sn.(1)设bn=an2n-1,证明:数列{bn}是等差数列;(1)证明:an+1=2an+2n,an+12n=an2n-1+1.而bn=an2n-1,故bn+1=bn+1,∴{bn}是首项为1,公差为1的等差数列.(2)解:由(1),得bn=1+(n-1)=n.an=bn·2n-1=n·2n-1.Sn=1·20+2·21+…+(n-1)·2n-2+n·2n-1,2Sn=1·21+2·22+…+(n-1)·2n-1+n·2n.两式相减,得-Sn=20+21+…+2n-1-n·2n=2n-1-n·2n,即Sn=n·2n-2n+1.
本文标题:2016年《南方新课堂·高考总复习》数学(理科)-第五章-第5讲-利用几类经典的递推关系式求通项公式
链接地址:https://www.777doc.com/doc-7536681 .html