您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 【解析版】2014-2015年吉安市吉州区七年级下期末数学试卷
2014-2015学年江西省吉安市吉州区七年级(下)期末数学试卷一、选择题(本大题共6小题,每小题3分,共18分)1.下列运算中正确的是()A.(a3)2=a5B.a2+a3=a5C.(a+1)2=a2+1D.a5÷a3=a22.现有四根木棒,长度分别为4cm,6cm,8cm,10cm,从中任取三根木棒,能组成三角形的个数为()A.1个B.2个C.3个D.4个3.从下图的四张印有品牌标志图案的卡片中任取一张,取出印有品牌标志的图案是轴对称图形的卡片的概率是()A.B.C.D.14.在正方形网格中,∠AOB的位置如图所示,到∠AOB两边距离相等的点应是()A.M点B.N点C.P点D.Q点5.把一张正方形纸片如图①、图②对折两次后,再按如图③挖去一个三角形小孔,则展开后图形是()A.B.C.D.6.A、B两地相距360km,甲车以100km/h的速度从A地驶往B地,乙车以80km/h的速度从B地驶往A地,两车同时出发.设乙车行驶的时间为x(h),两车之间的距离为y(km),则y与x之间的函数关系的图象是()A.B.C.D.二、填空题(本大题共8小题,每小题3分,共24分)7.计算:(π﹣3.14)0﹣()﹣1=.8.已知1纳米=0.000000001米,某种植物的花粉直径为35000纳米,则它的直径可以表示为米(用科学记数法表示).9.已知x2+(k﹣1)x+16是完全平方式,那么k=.10.在下列说法中:①两点确定一条直线;②垂线段最短;③相等的角是对顶角;④三角形三条高、中线、角平分线都分别交于一点,正确的有.(只填序号)11.将一副直角三角板ABC和EDF如图放置(其中∠A=60°,∠F=45°).使点E落在AC边上,且ED∥BC,则∠CEF的度数为.12.已知(x+1)(x+q)的结果中不含x的一次项,则常数q=.13.如图,△ABC的内部有一点P,且D、E、F是P分别以AB、BC、AC为对称轴的对称点.若△ABC的内角∠A=70°,∠B=60°,∠C=50°,则∠ADB+∠BEC+∠CFA=.14.如图所示,∠C=90°,Rt△ABC中,∠A=30°,Rt△A′B′C中,∠A=45°,点A′、B分别在线段AC、B′C上.将△A′B′C绕直角顶点C顺时针旋转一个锐角α时,边A′B′分别交AB、AC于P、Q,且△APQ为等腰三角形,则锐角α的度数.三、(本大题共4小题,每小题6分,共24分)15.已知2x=3,2y=5.求:(1)2x+y的值;(2)23x的值;(3)22x+y﹣1的值.16.已知某品牌遮阳伞如图①所示,图②是其剖面图,若AG同时平分∠BAC与∠EDF,且AB∥ED,则AC∥DF吗?请在下面括号内填写理由.解:∵AB∥DE∴∠=∠()∵AG同时平分∠BAC与∠EDF(已知)∴∠DAC=∠DAB,∠GDF=∠GDE()∴∠DAC=∠GDF()∴AC∥DF()17.如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且BC∥EF,AF=CD,请你添加一个条件,使得△ABC≌△DEF,并加以证明.18.如图是由一个等腰梯形和一个等腰三角形组成的轴对称图形,请你用两种方法作出它的对称轴.(要求:只能用没有刻度的直尺,可不写作法,但要保留作图痕迹)四、(本大题共3小题,每小题8分,共24分)19.化简求值:[(2a﹣b)2﹣(b+2a)(b﹣2a)]÷(﹣2a),其中a=﹣,b=3.20.一不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球2个,蓝球1个,黄球若干个,现从中任意摸出一个球是红球的概率为.(1)求口袋中黄球的个数;(2)甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用“树状图法”或“列表法”,求两次摸出都是红球的概率;(3)现规定:摸到红球得5分,摸到黄球得3分,摸到蓝球得2分(每次摸后放回),乙同学在一次摸球游戏中,第一次随机摸到一个红球第二次又随机摸到一个蓝球,若随机再摸一次,求乙同学三次摸球所得分数之和不低于10分的概率.21.如图,自行车每节链条的长度为2.5cm,交叉重叠部分的圆的直径为0.8cm.(1)观察图形填写下表:链条节数(n)234链条总长度y(cm)(2)写出链条的总长度y(cm)与节数n的函数关系;(3)如果一辆22型的自行车由50节链条环形链接而成,那么这辆自行车的链条链接后的总长度.五、(本大题共2小题,每小题9分,共18分)22.如图,在四边形ABCD中,AD=BC且AD∥BC,E为BC边上一点,且AB=AE.(1)求证:△ABC≌△EAD;(2)若AE平分∠DAB,∠EAC=20°,求∠AED的度数.23.某校部分住校生,放学后到学校锅炉房打水,每人接水2升,他们先同时打开两个放水笼头,后来因故障关闭一个放水笼头.假设前后两人接水间隔时间忽略不计,且不发生泼洒,锅炉内的余水量y(升)与接水时间x(分)的函数图象如图.请结合图象,回答下列问题:(1)根据图中信息,请你写出一个结论;(2)问前15位同学接水结束共需要几分钟?(3)小敏说:“今天我们寝室的8位同学去锅炉房连续接完水恰好用了3分钟.”你说可能吗?请说明理由.六、(本大题共1小题,共12分)24.如图甲,在△ABC中,∠ACB为锐角,点D为射线BC上任一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF,解答下列问题:(1)如果AB=AC,∠BAC=90°.①当点D在线段BC上时(与点B不重合),如图乙,线段CF、BD之间的位置关系为,数量关系为.②当点D在线段BC的延长线上时,如图丙,①中的结论是否仍然成立,为什么?(2)小明通过尝试发现如图丁:如果AB≠AC,∠BAC≠90°,只要∠ACB=45°,CF与BD的位置关系就不变(点C、F重合除外),你同意他的说法吗?并请你说明理由.2014-2015学年江西省吉安市吉州区七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分)1.下列运算中正确的是()A.(a3)2=a5B.a2+a3=a5C.(a+1)2=a2+1D.a5÷a3=a2考点:同底数幂的除法;合并同类项;幂的乘方与积的乘方;完全平方公式.分析:根据幂的乘方、同底数幂的除法、同类项和完全平方公式判断即可.解答:解:A、(a3)2=a6,错误;B、a2与a3不是同类项,不能合并,错误;C、(a+1)2=a2+2a+1,错误;D、a5÷a3=a2,正确;故选D.点评:此题考查幂的乘方、同底数幂的除法、同类项和完全平方公式,关键是根据法则计算.2.现有四根木棒,长度分别为4cm,6cm,8cm,10cm,从中任取三根木棒,能组成三角形的个数为()A.1个B.2个C.3个D.4个考点:三角形三边关系.分析:取四根木棒中的任意三根,共有4中取法,然后依据三角形三边关系定理将不合题意的方案舍去.解答:解:共有4种方案:①取4cm,6cm,8cm;由于8﹣4<6<8+4,能构成三角形;②取4cm,8cm,10cm;由于10﹣4<8<10+4,能构成三角形;③取4cm,6cm,10cm;由于6=10﹣4,不能构成三角形,此种情况不成立;④取6cm,8cm,10cm;由于10﹣6<8<10+6,能构成三角形.所以有3种方案符合要求.故选C.点评:考查三角形的边时,要注意三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边.当题目指代不明时,一定要分情况讨论,把符合条件的保留下来,不符合的舍去.3.从下图的四张印有品牌标志图案的卡片中任取一张,取出印有品牌标志的图案是轴对称图形的卡片的概率是()A.B.C.D.1考点:概率公式;轴对称图形.分析:根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.解答:解:在这四张卡片中有第二、三、四张卡片是轴对称图形,因此是轴对称图形的卡片的概率是.故选C.点评:此题主要考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.4.在正方形网格中,∠AOB的位置如图所示,到∠AOB两边距离相等的点应是()A.M点B.N点C.P点D.Q点考点:角平分线的性质.专题:网格型.分析:根据角平分线的性质“角的平分线上的点到角的两边的距离相等”,注意观察点M、N、P、Q中的哪一点在∠AOB的平分线上.解答:解:从图上可以看出点M在∠AOB的平分线上,其它三点不在∠AOB的平分线上.所以点M到∠AOB两边的距离相等.故选A.点评:本题主要考查平分线的性质,根据正方形网格看出∠AOB平分线上的点是解答问题的关键.5.把一张正方形纸片如图①、图②对折两次后,再按如图③挖去一个三角形小孔,则展开后图形是()A.B.C.D.考点:剪纸问题.专题:计算题.分析:结合空间思维,分析折叠的过程及剪三角形的位置,注意图形的对称性,易知展开的形状.解答:解:当正方形纸片两次沿对角线对折成为一直角三角形时,在直角三角形中间的位置上剪三角形,则直角顶点处完好,即原正方形中间无损,且三角形关于对角线对称,三角形的AB边平行于正方形的边.再结合C点位置可得答案为C.故选C.点评:本题主要考查了学生的立体思维能力即操作能力.错误的主要原因是空间观念以及转化的能力不强,缺乏逻辑推理能力,需要在平时生活中多加培养.6.A、B两地相距360km,甲车以100km/h的速度从A地驶往B地,乙车以80km/h的速度从B地驶往A地,两车同时出发.设乙车行驶的时间为x(h),两车之间的距离为y(km),则y与x之间的函数关系的图象是()A.B.C.D.考点:一次函数的应用;一次函数的图象.专题:压轴题;数形结合.分析:根据题意求出函数的解析式,结合题意确定其图象即可,解题时还应注意自变量的取值范围.解答:解:两车相遇之前函数的解析式为:y=360﹣(100+80)x(0≤x≤2),两车相遇后函数解析式为:y=(100+80)x﹣360(x>2),甲先到B地,这以后两车之间的距离随时间的改变变的缓慢,又∵当x=3.6时,y=180×3.6﹣360=288,故选C.点评:本题考查了函数的图象及函数的应用的相关知识,解题的关键是根据题意列出函数的关系式,并结合自变量的取值范围确定函数的图象.二、填空题(本大题共8小题,每小题3分,共24分)7.计算:(π﹣3.14)0﹣()﹣1=﹣1.考点:负整数指数幂;零指数幂.专题:计算题.分析:根据零指数幂和负指数幂运算法则进行计算.解答:解:原式=(π﹣3.14)0﹣()﹣1=1﹣2=﹣1.故答案为﹣1.点评:主要考查了零指数幂,负指数幂的运算.负指数为正指数的倒数;任何非0数的0次幂等于1.8.已知1纳米=0.000000001米,某种植物的花粉直径为35000纳米,则它的直径可以表示为3.5×10﹣5米(用科学记数法表示).考点:科学记数法—表示较小的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.解答:解:∵1纳米=10﹣9米,∴35000纳米=0.000035米=3.5×10﹣5米.故答案为:3.5×10﹣5.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.9.已知x2+(k﹣1)x+16是完全平方式,那么k=9或﹣7.考点:完全平方式.分析:将原式化为x2+(k﹣1)x+42,再根据完全平方公式解答.解答:解:原式可化为x2+(k﹣1)x+42,可见当k﹣1=8或k﹣1=﹣8时,x2+(k﹣1)x+16是完全平方式,故答案为:9或﹣7.点评:本题考查了完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.10.在下列说法中:①两点确定一条直线;
本文标题:【解析版】2014-2015年吉安市吉州区七年级下期末数学试卷
链接地址:https://www.777doc.com/doc-7542307 .html