您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 河南省新乡2018届九年级上期中考试数学试卷含答案
新乡2018届九年级上学期期中考试数学试卷一、选择题(每小题3分,共30分)1.下列图形是中心对称图形.()A.B.C.D.2.在抛物线y=﹣2(x﹣1)2上的一个点是()A.(2,3)B.(﹣2,3)C.(1,﹣5)D.(0,﹣2)3.如图,二次函数y=ax2+bx的图象经过点A,B,C,则判断正确的是()A.a>0,b>0B.a<0,b<0C.a>0,b<0D.a<0,b>04.将抛物线y=x2平移得到抛物线y=(x﹣3)2,则这个平移过程正确的是()A.向左平移3个单位B.向右平移3个单位C.向上平移3个单位D.向下平移3个单位5.不解方程,判断方程x2+2x﹣1=0的根的情况是()A.有两个相等的实根B.有两个不相等的实数根C.无实数根D.无法确定6.一件商品的原价是100元,经过两次提价后的价格为121元.如果每次提价的百分率都是x,根据题意,下面列出的方程正确的是()A.100(1﹣x)=121B.100(1+x)=121C.100(1﹣x)2=121D.100(1+x)2=1217.已知点A(a,1)与点A′(5,b)关于坐标原点对称,则实数a、b的值是()A.a=5,b=1B.a=﹣5,b=1C.a=5,b=﹣1D.a=﹣5,b=﹣18.如图,AB是⊙O的一条弦,作直径CD,使CD⊥AB,垂足为M.AB=8cm,∠D=40°,那么AM的值和∠C的度数分别是()A.3cm和30°B.3cm和50°C.4cm和50°D.4cm和60°9.如图,四边形ABCD是圆内接四边形,AB是⊙O的直径,若∠BAC=20°,则∠ADC的度数为()A.110°B.100°C.120°D.90°10.如图,△COD是△AOB绕点O顺时针旋转40°后得到的图形,若点C恰好落在AB上,且∠AOD的度数为90°,则∠COB、∠B的度数是().A.10°和40°B.10°和50°C.40°和50°D.10°和60°二、填空题(每小题3分,共15分)11.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到白球的概率为.【来源:21·世纪·教育·网】12.把二次函数y=x2﹣2x+3化成y=a(x﹣h)2+k的形式为.13.如图,⊙O的直径AB垂直弦CD于点E,AB=8,∠A=22.5°,则CD=14.如图,半径为5的⊙A中,弦BC,ED所对的圆心角分别是∠BAC,∠EAD,已知DE=6,∠BAC+∠EAD=180°,则弦BC的长等于__________21·世纪*教育网13141515.如图,将△ABC绕点B逆时针旋转到△A′BC′,使点A,B,C′在同一直线上,若∠BCA=90°,∠BAC=30°,AB=4cm,则图中阴影部分面积为__________cm2.三、解答题(本大题共8个小题,满分75分)16.选择适当的方法解下列方程:(每小题4分,共12分)(1)x2+2x﹣35=0(2)x2﹣7=4x(3)10452xxx)(17.(6分)在直角坐标平面内,二次函数图象的顶点为A(1,-4),且过点B(3,0),求该二次函数的关系式;18.(6分)某公司现有甲、乙两种品牌的计算器,甲品牌计算器有A,B,C三种不同的型号,乙品牌计算器有D,E两种不同的型号,某中学要从甲、乙两种品牌的计算器中各选购一种型号的计算器.(1)列举出所有选购方案;(2)如果(1)中各种选购方案被选中的可能性相同,那么A型号计算器被选中的概率是多少?19.(8分)如图,AB为⊙O的直径,AC是弦,AC为∠BAD的平分线,过A点作AD⊥CD于点D.求证:直线CD为⊙O的切线.20.(8分)已知Rt△ABC的斜边AB=13cm,一条直角边AC=5cm,以直线AB为轴旋转一周得一个几何体。求这个几何体的表面积。21.(10分)某果园有100颗橙子树,平均每棵树结600个橙子,现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子,假设果园多种了x棵橙子树.(1)直接写出平均每棵树结的橙子个数y(个)与x之间的关系;(2)果园多种多少棵橙子树时,可使橙子的总产量最大?最大为多少个?22.(12分)如图,AB是⊙O的一条弦,且AB=.点C,E分别在⊙O上,且OC⊥AB于点D,∠E=30°,连接OA.(1)求OA的长;(2)若AF是⊙O的另一条弦,且点O到AF的距离为,求∠BAF的度数.23.(13分)如图,半径为2的⊙C与x轴的正半轴交于点A,与y轴的正半轴交于点B,点C的坐标为(1,0).若抛物线233yxbxc过A、B两点.(1)求抛物线的解析式;(2)在抛物线上是否存在点P,使得∠PBO=∠POB?若存在,求出点P的坐标;若不存在说明理由;(3)若点M是抛物线(在第一象限内的部分)上一点,△MAB的面积为S,求S的最大(小)值.新乡九年级数学期中考试卷一、选择题(每小题3分,共30分)1.D2.D3.A4.B5.B6.D7.D8.C9.A10D二、填空题(每小题3分,共15分)11.3812.y=(x﹣1)2+213.814.815.4∏三、解答题(本大题共8个小题,满分75分)16.(1)-7,5(2)(3)2,2.517.1819.20.21.解:(1)平均每棵树结的橙子个数y(个)与x之间的关系为:y=600-5x(0≤x<120).(2)设果园多种x棵橙子树时,可使橙子的总产量为w,则w=(600-5x)(100+x)=-5x2+100x+60000=-5(x-10)2+60500,∴当x=10时,w最大=60500.即果园多种10棵橙子树时,可使橙子的总产量最大,最大为60500个.22.解:(1)∵OC⊥AB,AB=,∴AD=DB=2,∵∠E=30°,∴∠AOD=60°,∠OAB=30°,∴OA=4;(2)如图,作OH⊥AF于H,∵OA=4,OH=2,∴∠OAF=45°,∴∠BAF=∠OAF+∠OAB=75°,则∠BAF′=∠OAF′﹣∠OAB=15°,∴∠BAF的度数是75°或15°.23.解:(1)如答图1,连接OB.∵BC=2,OC=1∴OB=413∴B(0,3)........................................................分将A(3,0),B(0,3)代入二次函数的表达式得,解得:,∴2323333yxx.....................................分(2)存在.........................................................................分如答图2,作线段OB的垂直平分线l,与抛物线的交点即为点P.∵B(0,3),O(0,0),∴直线l的表达式为32y.代入抛物线的表达式,得232333332yxx;解得1012x,∴P(103122,)................................................分21·cn·jy·com解:(1)∵二次函数y=x2+(2m+1)x+m2﹣1与x轴交于A,B两个不同的点,∴一元二次方程x2+(2m+1)x+m2﹣1=0有两个不相等的实数根,∴△=(2m+1)2﹣4(m2﹣1)=4m+5>0,解得:m>﹣.(2)当m=1时,原二次函数解析式为y=x2+3x,令y=x2+3x=0,解得:x1=﹣3,x2=0,∴当m=1时,A、B两点的坐标为(﹣3,0)、(0,0).解:∵AB=8,∴OC=OA=4,∵∠A=22.5°,∴∠COE=2∠A=45°,∵直径AB垂直弦CD于E,∴,∴.证明:(1)∵⊙O切BC于点D,∴OD⊥BC,∵AC∥OD,∴∠C=∠ODB=90°,∵AF为⊙O直径,∴∠AGF=90°=∠C,∴BC∥GF.解:(2)∵AC∥OD,BC∥GF∴四边形CGED为平行四边形,∵∠C=90°,∴四边形CGED为矩形,∵tanA=,∴sinA=,∵AF=2AO=2a,OF=a,∴GF=AF•sinA=2a×=,∵OD⊥BC,∴GE=EF==,在Rt△OEF中,OE===,∴DE=OD﹣OE=a﹣=,∴S四边形CGED=GE•DE=×=.解:(1)将A(3,0)代入直线l1:y=x+b中,0=3+b,解得:b=﹣3,∴直线l1:y=x﹣3.联立直线l1、l2表达式成方程组,,解得:,∴点B的坐标为(1,﹣2).(2)设抛物线y=ax2+bx+c的顶点式为y=a(x﹣h)2+k,∵抛物线y=ax2+bx+c的顶点为B(1,﹣2),∴y=a(x﹣1)2﹣2,∵抛物线y=ax2+bx+c经过点A,∴a(3﹣1)2﹣2=0,解得:a=,∴抛物线的表达式为y=(x﹣1)2﹣2.(3)∵直线x=﹣1分别与直线l1,l2交于C、D两点,∴C、D两点的坐标分别为(﹣1,﹣4),(﹣1,2),当抛物线y=ax2+bx+c过点C时,a(﹣1﹣1)2﹣2=﹣4,解得:a=﹣;当抛物线y=ax2+bx+c过点D时,a(﹣1﹣1)2﹣2=2,解得:a=1.∴当抛物线y=ax2+bx+c与线段CD有交点时,a的取值范围为﹣≤a≤1且a≠0.(1)证明:连接OB、OC.∵MN是⊙O的切线,∴OB⊥MN,∵∠CBM=135°,∴∠CBN=45°,∴∠OBC=45°,∠BCE=45°.∵OB=OC,∴∠OBC=∠OCB=45°.∴∠OCE=90°,∴CE是⊙O的切线;(2)解:∵OB⊥BE,CE⊥BE,OC⊥CE,∴四边形BOCE是矩形,又OB=OC,∴四边形BOCE是正方形,∴BE=CE=OB=OC=r.在Rt△CDE中,∵∠D=30°,CE=r,∴DE=r.∵BD=2,∴r+r=2,∴r=﹣,即⊙O的半径为﹣.解:(1)∵二次函数y═ax2+bx+c(a>0)的图象与x轴交于A(﹣5,0)、B(1,0)两点,∴抛物线的解析式为y=a(x+5)(x﹣1)=ax2+4ax﹣5a=a(x+2)2﹣9a,则点D的坐标为(﹣2,﹣9a),点C的坐标为(0,﹣5a);解:(1)由矩形的性质可知:B(-8,6),∴D(-4,6).∴点D关于y轴对称点D′(4,6).将A(-8,0)、D(-4,6)代入y=ax2+bx,得64a-8b=0,16a-4b=6.解得a=-38,b=-3.(2)设直线AD′的解析式为y=kx+n,∴-8k+n=0,4k+n=6.解得k=12,n=4.∴直线y=12x+4与y轴交于点(0,4).∴P(0,4).(3)解法1:由于OP=4,故将抛物线向下平移4个单位长度时,有OA1+OD1最短.∴y+4=-38x2-3x,即此时的解析式为y=-38x2-3x-4.解法2:设抛物线向下平移了m个单位长度,则A1(-8,-m),D1(-4,6-m),∴D′1(4,6-m).2·1·c·n·j·y令直线A1D′1为y=k′x+b′.则-8k′+b′=-m,4k′+b′=6-m.解得k′=12,b′=4-m.∵点O为使OA1+OD1最短的点,∴b′=4-m=0.∴m=4,即将抛物线向下平移了4个单位长度.∴y+4=-38x2-3x,即此时的解析式为y=-38x2-3x-4.解:(1)∵∠ABC=90°,∴OB⊥BC.∵OB是⊙O的半径,∴CB为⊙O的切线.又∵CD切⊙O于点D,∴BC=CD;(2)∵BE是⊙O的直径,∴∠BDE=90°.∴∠ADE+∠CDB=90°.又∵∠ABC=90°,∴∠ABD+∠CBD=90°.由(1)得BC=CD,∴∠CDB=∠CBD.∴∠ADE=∠ABD;(3)由(2)得,∠ADE=∠ABD,∠A=∠A.∴△ADE∽△ABD.∴=.∴=,∴BE=3,∴所求⊙O的直径长为3.28.
本文标题:河南省新乡2018届九年级上期中考试数学试卷含答案
链接地址:https://www.777doc.com/doc-7542692 .html