您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 秦皇岛市抚宁学区2017届九年级上期中数学试卷含答案解析
2016-2017学年河北省秦皇岛市抚宁学区九年级(上)期中数学试卷一、精心选一选,慧眼识金!(本大题共14小题,每小题3分,共42分,在每小题给出的四个选项中只有一项是正确的)1.下列方程是关于x的一元二次方程的是()A.ax2+bx+c=0B.=2C.x2+2x=x2﹣1D.3(x+1)2=2(x+1)2.用配方法解方程x2﹣2x﹣1=0时,配方后得的方程为()A.(x+1)2=0B.(x﹣1)2=0C.(x+1)2=2D.(x﹣1)2=23.一元二次方程x2﹣2(3x﹣2)+(x+1)=0的一般形式是()A.x2﹣5x+5=0B.x2+5x﹣5=0C.x2+5x+5=0D.x2+5=04.目前我国建立了比较完善的经济困难学生资助体系.某校去年上半年发放给每个经济困难学生389元,今年上半年发放了438元,设每半年发放的资助金额的平均增长率为x,则下面列出的方程中正确的是()A.438(1+x)2=389B.389(1+x)2=438C.389(1+2x)2=438D.438(1+2x)2=3895.观察下列图案,既是中心对称图形又是轴对称图形的是()A.B.C.D.6.下列四个多边形:①等边三角形;②正方形;③正五边形;④正六边形、其中,既是轴对称图形又是中心对称图形的是()A.①②B.②③C.②④D.①④7.下列说法不正确的是()A.平移或旋转后的图形的形状大小不变B.平移过程中对应线段平行(或在同一条直线上)且相等C.旋转过程中,图形中的每一点都旋转了相同的路程D.旋转过程中,对应点到旋转中心的距离相等8.如图,P是等边△ABC内的一点,若将△PAB绕点A逆时针旋转得到△P′AC,则∠PAP′的度数为(A.120°B.90°C.60°D.30°.9.用10米长的铝材制成一个矩形窗框,使它的面积为6平方米.若设它的一条边长为x米,则根据题意可列出关于x的方程为()A.x(5+x)=6B.x(5﹣x)=6C.x(10﹣x)=6D.x(10﹣2x)=610.二次函数y=(x﹣1)2﹣2的顶点坐标是()A.(﹣1,﹣2)B.(﹣1,2)C.(1,﹣2)D.(1,2)11.抛物线y=﹣3x2+2x﹣1与坐标轴的交点个数为()A.0个B.1个C.2个D.3个12.把抛物线y=﹣x2向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为()A.y=﹣(x﹣1)2﹣3B.y=﹣(x+1)2﹣3C.y=﹣(x﹣1)2+3D.y=﹣(x+1)2+313.在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为()A.B.C.D.14.如图,抛物线y=ax2+bx+c(a>0)的对称轴是直线x=1,且经过点P(3,0),则a﹣b+c的值为()A.0B.﹣1C.1D.2二、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共18分)15.点P(5,﹣3)关于原点的对称点的坐标为.16.若y=(a﹣1)是关于x的二次函数,则a=.17.如图,可以看作是一个基础图形绕着中心旋转7次而生成的,则每次旋转的度数是.18.若两数和为﹣7,积为12,则这两个数是和.19.如图,在平面直角坐标系中,若△ABC与△A1B1C1关于E点成中心对称,则对称中心E点的坐标是.20.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①a+b+c<0;②a﹣b+c<0;③b+2a<0;④abc>0,其中正确的是(填编号)三、解答题(耐心计算,表露你萌动的智慧!共60分)21.用适当的方法解一元二次方程(1)x2+3x+1=0(2)(x﹣1)(x+2)=2(x+2)22.己知一元二次方程x2﹣3x+m﹣1=0.(1)若方程有两个不相等的实数根,求实数m的取值范围;(2)若方程有两个相等的实数根,求此时方程的根.23.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出4件,若商场平均每天盈利2100元,每件衬衫应降价多少元?24.抛物线y=﹣x2+(m﹣1)x+m与y轴交于(0,3)点(1)求抛物线的解析式;(2)求抛物线与x轴的交点坐标,与y轴交点坐标;(3)画出这条抛物线;(4)根据图象回答:①当x取什么值时,y>0,y<0?②当x取什么值时,y的值随x的增大而减小?25.如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0)、C(﹣1,0).(1)请直接写出点A关于y轴对称的点的坐标;(2)将△ABC绕坐标原点O逆时针旋转90度.画出图形,直接写出点B的对应点的坐标;(3)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.26.小明家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃,他买回了32米长的不锈钢管准备作为花圃的围栏(如图所示),花圃的一边AD(垂直围墙的边)究竟应为多少米才能使花圃的面积最大?2016-2017学年河北省秦皇岛市抚宁学区九年级(上)期中数学试卷参考答案与试题解析一、精心选一选,慧眼识金!(本大题共14小题,每小题3分,共42分,在每小题给出的四个选项中只有一项是正确的)1.下列方程是关于x的一元二次方程的是()A.ax2+bx+c=0B.=2C.x2+2x=x2﹣1D.3(x+1)2=2(x+1)【考点】一元二次方程的定义.【分析】根据一元二次方程的定义解答,一元二次方程必须满足四个条件:未知数的最高次数是2;二次项系数不为0;是整式方程;含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【解答】解:A、ax2+bx+c=0当a=0时,不是一元二次方程,故A错误;B、+=2不是整式方程,故B错误;C、x2+2x=x2﹣1是一元一次方程,故C错误;D、3(x+1)2=2(x+1)是一元二次方程,故D正确;故选:D.2.用配方法解方程x2﹣2x﹣1=0时,配方后得的方程为()A.(x+1)2=0B.(x﹣1)2=0C.(x+1)2=2D.(x﹣1)2=2【考点】解一元二次方程-配方法.【分析】在本题中,把常数项﹣1移项后,应该在左右两边同时加上一次项系数﹣2的一半的平方.【解答】解:把方程x2﹣2x﹣1=0的常数项移到等号的右边,得到x2﹣2x=1,方程两边同时加上一次项系数一半的平方,得到x2﹣2x+1=1+1配方得(x﹣1)2=2.故选D.3.一元二次方程x2﹣2(3x﹣2)+(x+1)=0的一般形式是()A.x2﹣5x+5=0B.x2+5x﹣5=0C.x2+5x+5=0D.x2+5=0【考点】一元二次方程的一般形式.【分析】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.【解答】解:一元二次方程x2﹣2(3x﹣2)+(x+1)=0的一般形式是x2﹣5x+5=0.故选A.4.目前我国建立了比较完善的经济困难学生资助体系.某校去年上半年发放给每个经济困难学生389元,今年上半年发放了438元,设每半年发放的资助金额的平均增长率为x,则下面列出的方程中正确的是()A.438(1+x)2=389B.389(1+x)2=438C.389(1+2x)2=438D.438(1+2x)2=389【考点】由实际问题抽象出一元二次方程.【分析】先用含x的代数式表示去年下半年发放给每个经济困难学生的钱数,再表示出今年上半年发放的钱数,令其等于438即可列出方程.【解答】解:设每半年发放的资助金额的平均增长率为x,则去年下半年发放给每个经济困难学生389(1+x)元,今年上半年发放给每个经济困难学生389(1+x)2元,由题意,得:389(1+x)2=438.故选B.5.观察下列图案,既是中心对称图形又是轴对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,不符合题意,故本选项错误;B、是轴对称图形,不是中心对称图形,不符合题意,故本选项错误;C、是轴对称图形,也是中心对称图形,符合题意,故本选项正确;D、是轴对称图形,不是中心对称图形,不符合题意,故本选项错误.故选C.6.下列四个多边形:①等边三角形;②正方形;③正五边形;④正六边形、其中,既是轴对称图形又是中心对称图形的是()A.①②B.②③C.②④D.①④【考点】中心对称图形;轴对称图形.【分析】根据正多边形的性质和轴对称与中心对称的性质解答.【解答】解:由正多边形的对称性知,偶数边的正多边形既是轴对称图形,又是中心对称图形;奇数边的正多边形只是轴对称图形,不是中心对称图形.故选C.7.下列说法不正确的是()A.平移或旋转后的图形的形状大小不变B.平移过程中对应线段平行(或在同一条直线上)且相等C.旋转过程中,图形中的每一点都旋转了相同的路程D.旋转过程中,对应点到旋转中心的距离相等【考点】旋转的性质;平移的性质.【分析】根据旋转的性质和平移的性质对各选项进行判断.【解答】解:A、平移或旋转后的图形的形状大小不变,所以A选项的说法正确;B、平移过程中对应线段平行(或在同一条直线上)且相等,所以B选项的说法正确;C、旋转过程中,图形中的每一点所旋转的路程等于以旋转中心为圆心、每个点到旋转中心的距离为半径、圆心角为旋转角的弧长,所以C选项的说法不正确;D、旋转过程中,对应点到旋转中心的距离相等,所以D选项的说法正确.故选C.8.如图,P是等边△ABC内的一点,若将△PAB绕点A逆时针旋转得到△P′AC,则∠PAP′的度数为(A.120°B.90°C.60°D.30°.【考点】旋转的性质.【分析】根据旋转的性质,找出∠PAP′=∠BAC,根据等边三角形的性质,即可解答.【解答】解:如图,根据旋转的性质得,∠PAP′=∠BAC,∵△ABC是等边三角形,∴∠BAC=60°,∴∠PAP′=60°;故选C.9.用10米长的铝材制成一个矩形窗框,使它的面积为6平方米.若设它的一条边长为x米,则根据题意可列出关于x的方程为()A.x(5+x)=6B.x(5﹣x)=6C.x(10﹣x)=6D.x(10﹣2x)=6【考点】由实际问题抽象出一元二次方程.【分析】一边长为x米,则另外一边长为:5﹣x,根据它的面积为6平方米,即可列出方程式.【解答】解:一边长为x米,则另外一边长为:5﹣x,由题意得:x(5﹣x)=6,故选:B.10.二次函数y=(x﹣1)2﹣2的顶点坐标是()A.(﹣1,﹣2)B.(﹣1,2)C.(1,﹣2)D.(1,2)【考点】二次函数的性质.【分析】已知解析式为抛物线的顶点式,根据顶点式的坐标特点,直接写出顶点坐标.【解答】解:因为y=(x﹣1)2﹣2是抛物线的顶点式,根据顶点式的坐标特点,顶点坐标为(1,﹣2).故选C.11.抛物线y=﹣3x2+2x﹣1与坐标轴的交点个数为()A.0个B.1个C.2个D.3个【考点】抛物线与x轴的交点.【分析】先根据判别式的值得到△=﹣8<0,根据△=b2﹣4ac决定抛物线与x轴的交点个数得到抛物线与x轴没有交点,由于抛物线与y轴总有一个交点,所以抛物线y=﹣3x2+2x﹣1与坐标轴的交点个数为1.【解答】解:∵△=22﹣4×(﹣3)×(﹣1)=﹣8<0,∴抛物线与x轴没有交点,而抛物线y=﹣3x2+2x﹣1与y轴的交点为(0,﹣1),∴抛物线y=﹣3x2+2x﹣1与坐标轴的交点个数为1.故选B.12.把抛物线y=﹣x2向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为()A.y=﹣(x﹣1)2﹣3B.y=﹣(x+1)2﹣3C.y=﹣(x﹣1)2+3D.y=﹣(x+1)2+3【考点】二次函数图象与几何变换.【分析】利用二次函数平移的性质.【解答】解:当y=﹣x2
本文标题:秦皇岛市抚宁学区2017届九年级上期中数学试卷含答案解析
链接地址:https://www.777doc.com/doc-7542778 .html