您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 长春外国语学校2016届九年级上期中数学试卷含答案解析
2016-2017学年吉林省长春外国语学校九年级(上)期中数学试卷一、选择题(每题3分,共24分)1.﹣的倒数是()A.﹣7B.7C.D.﹣2.如图是由5个相同的小正方体组成的立体图形,这个立体图形的俯视图是()A.B.C.D.3.下列运算中,正确的是()A.2+3=5B.﹣a8÷a4=﹣a2C.(3a2)3=27a6D.(a2﹣b)2=a4﹣b24.不等式组的解集在数轴上表示正确的是()A.B.C.D.5.如图,在⊙O中,AB是直径,点C是的中点,点P是的中点,则∠PAB的度数()A.30°B.25°C.22.5°D.不能确定6.如图,∠ABD=∠BDC=90°,∠A=∠CBD,AB=3,BD=2,则CD的长为()A.B.C.2D.37.下列函数解析式中,一定为二次函数的是()A.y=3x﹣1B.y=ax2+bx+cC.s=2t2﹣2t+1D.y=x2+8.如图,在平面直角坐标系中,点A在第一象限,AB⊥y轴于点B,函数(k>0,x>0)的图象与线段AB交于点C,且AB=3BC.若△AOB的面积为12,则k的值为()A.4B.6C.8D.12二、填空题(每空3分,共18分)9.分解因式:a2﹣3a=.10.一个纳米粒子的直径是0.000000035米,用科学记数法表示为米.11.如图,在△ABC中,AB>AC,按以下步骤作图:分别以点B和点C为圆心,大于BC一半的长为半径作圆弧,两弧相交于点M和点N,作直线MN交AB于点D;连结CD.若AB=8,AC=3,则△ACD的周长为.12.如图,在平面直角坐标系中,点A的坐标为(0,4),△OAB沿x轴向右平移后得到△O′A′B′,点A的对应点A′是直线y=x上一点,则点B与其对应点B′间的距离为.13.如图,点E在正方形ABCD的边CD上.若△ABE的面积为8,CE=3,则线段BE的长为.14.如图,某抛物线的对称轴为直线x=2,点E是该抛物线顶点,抛物线与y轴交于点C,过点C作CD∥x轴,与抛物线交于点B,与对称轴交于点D,点A是对称轴上一点,连结AC、AB,若△ABC是等边三角形,则图中阴影部分图形的面积之和是.三、解答题(共78分)15.先化简,再求值:(a+2)(a﹣2)+a(4﹣a),其中a=﹣.16.在一个不透明的盒子里,装有三个分别写有数字6,﹣2,7的小球,它们的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字.请你用画树形图或列表的方法,求下列事件的概率:(1)两次取出小球上的数字相同的概率;(2)两次取出小球上的数字之和大于10的概率.17.某工程队承接了3000米的修路任务,在修好600米后,引进了新设备,工作效率是原来的2倍,一共用30天完成了任务.求引进新设备前平均每天修路多少米?18.已知二次函数y=ax2+k(a≠0),当x=2时,y=4;当x=﹣1时,y=﹣3,求这个二次函数解析式.19.“今天你光盘了吗?”这是国家倡导“厉行节约,反对浪费”以来的时尚流行语.某校团委随机抽取了部分学生,对他们进行了关于“光盘行动”所持态度的调查,并根据调查收集的数据绘制了如下两幅不完整的统计图:根据上述信息,解答下列问题:(1)抽取的学生人数为;(2)将两幅统计图补充完整;(3)请你估计该校1200名学生中对“光盘行动”持赞成态度的人数.20.如图,某超市利用一个带斜坡的平台装卸货物,其纵断面ACFE如图所示.AE为台面,AC垂直于地面,AB表示平台前方的斜坡.斜坡的坡角∠ABC为45°,坡长AB为2m.为保障安全,又便于装卸货物,决定减小斜坡AB的坡角,AD是改造后的斜坡(点D在直线BC上),坡角∠ADC为31°.求斜坡AD底端D与平台AC的距离CD.(结果精确到0.01m)[参考数据:sin31°=0.515,cos31°=0.857,tan31°=0.601,≈1.414].21.如图,O为菱形ABCD对角线的交点,DE∥AC,CE∥BD.(1)试判断四边形OCED的形状,并说明理由;(2)若AC=6,BD=8,求线段OE的长.22.甲、乙两支清雪队同时开始清理某路段积雪,一段时间后,乙队被调往别处,甲队又用了3小时完成了剩余的清雪任务,已知甲队每小时的清雪量保持不变,乙队每小时清雪50吨,甲、乙两队在此路段的清雪总量y(吨)与清雪时间x(时)之间的函数图象如图所示.(1)乙队调离时,甲、乙两队已完成的清雪总量为吨;(2)求此次任务的清雪总量m;(3)求乙队调离后y与x之间的函数关系式.23.问题原型:如图①,在等腰直角三角形ABC中,∠ACB=90°,BC=a.将边AB绕点B顺时针旋转90°得到线段BD,连结CD.过点D作△BCD的BC边上的高DE,易证△ABC≌△BDE,从而得到△BCD的面积为.初步探究:如图②,在Rt△ABC中,∠ACB=90°,BC=a.将边AB绕点B顺时针旋转90°得到线段BD,连结CD.用含a的代数式表示△BCD的面积,并说明理由.简单应用:如图③,在等腰三角形ABC中,AB=AC,BC=a.将边AB绕点B顺时针旋转90°得到线段BD,连结CD.直接写出△BCD的面积.(用含a的代数式表示)24.如图,菱形ABCD中,对角线AC,BD相交于点O,且AC=6cm,BD=8cm,动点P,Q分别从点B,D同时出发,运动速度均为1cm/s,点P沿B→C→D运动,到点D停止,点Q沿D→O→B运动,到点O停止1s后继续运动,到点B停止,连接AP,AQ,PQ.设△APQ的面积为y(cm2)(这里规定:线段是面积0的几何图形),点P的运动时间为x(s).(1)填空:AB=cm,AB与CD之间的距离为cm;(2)当4≤x≤10时,求y与x之间的函数解析式;(3)直接写出在整个运动过程中,使PQ与菱形ABCD一边平行的所有x的值.2016-2017学年吉林省长春外国语学校九年级(上)期中数学试卷参考答案与试题解析一、选择题(每题3分,共24分)1.﹣的倒数是()A.﹣7B.7C.D.﹣【考点】倒数.【分析】直接根据倒数的定义求解.【解答】解:﹣的倒数是﹣7,故选A.2.如图是由5个相同的小正方体组成的立体图形,这个立体图形的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】从上面看到的平面图形即为该组合体的俯视图,据此求解.【解答】解:从上面看共有2行,上面一行有3个正方形,第二行中间有一个正方形,故选C.3.下列运算中,正确的是()A.2+3=5B.﹣a8÷a4=﹣a2C.(3a2)3=27a6D.(a2﹣b)2=a4﹣b2【考点】同底数幂的除法;幂的乘方与积的乘方;完全平方公式;二次根式的加减法.【分析】根据同底数幂的除法,底数不变指数相减;同类二次根式,积的乘方,完全平分公式,即可解答.【解答】解:A、与3不是同类二次根式,不能合并,故错误;B、﹣a8÷a4=﹣a4,故错误;C、正确;D、(a2﹣b)2=a4﹣2a2b+b2,故错误;故选:C.4.不等式组的解集在数轴上表示正确的是()A.B.C.D.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别求出各不等式的解集,再在数轴上表示出来即可.【解答】解:,由①得,x>﹣2,由②得,x≤3,故不等式组的解集为:﹣2<x≤3.在数轴上表示为:.故选C.5.如图,在⊙O中,AB是直径,点C是的中点,点P是的中点,则∠PAB的度数()A.30°B.25°C.22.5°D.不能确定【考点】圆周角定理;圆心角、弧、弦的关系.【分析】连接OC、OP,根据AB是直径、点C是的中点、点P是的中点,即可得出∠POB的度数,再结合圆周角定理即可得出结论.【解答】解:连接OC、OP,如图所示.∵AB是直径,点C是的中点,点P是的中点,∴∠POB=××180°=45°,∴∠PAB=∠POB=22.5°.故选C.6.如图,∠ABD=∠BDC=90°,∠A=∠CBD,AB=3,BD=2,则CD的长为()A.B.C.2D.3【考点】相似三角形的判定与性质.【分析】先根据题意判断出△ABD∽△BDC,再根据相似三角形的对应边成比例即可得出CD的长.【解答】解:∵∠ABD=∠BDC=90°,∠A=∠CBD,AB=3,BD=2,∴△ABD∽△BDC,∴=,即=,解得CD=.故选B.7.下列函数解析式中,一定为二次函数的是()A.y=3x﹣1B.y=ax2+bx+cC.s=2t2﹣2t+1D.y=x2+【考点】二次函数的定义.【分析】根据二次函数的定义,可得答案.【解答】解:A、y=3x﹣1是一次函数,故A错误;B、y=ax2+bx+c(a≠0)是二次函数,故B错误;C、s=2t2﹣2t+1是二次函数,故C正确;D、y=x2+不是二次函数,故D错误;故选:C.8.如图,在平面直角坐标系中,点A在第一象限,AB⊥y轴于点B,函数(k>0,x>0)的图象与线段AB交于点C,且AB=3BC.若△AOB的面积为12,则k的值为()A.4B.6C.8D.12【考点】反比例函数系数k的几何意义.【分析】连结OC,如图,根据三角形面积公式,由AB=3BC得到S△AOB=3S△BOC,可计算出S△BOC=4,再根据反比例函数比例系数k的几何意义得到|k|=4,然后去绝对值即可得到满足条件的k的值.【解答】解:连结OC,如图,∵AB⊥y轴于点B,AB=3BC,∴S△AOB=3S△BOC,∴S△BOC=×12=4,∴|k|=4,而k>0,∴k=8.故选C.二、填空题(每空3分,共18分)9.分解因式:a2﹣3a=a(a﹣3).【考点】因式分解-提公因式法.【分析】直接提取公因式a即可.【解答】解:a2﹣3a=a(a﹣3).10.一个纳米粒子的直径是0.000000035米,用科学记数法表示为3.5×10﹣8米.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的数也可以利用科学记数法表示,一般形式为a×10﹣n,与绝对值大于1数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000035=3.5×10﹣8.故答案是:3.5×10﹣8.11.如图,在△ABC中,AB>AC,按以下步骤作图:分别以点B和点C为圆心,大于BC一半的长为半径作圆弧,两弧相交于点M和点N,作直线MN交AB于点D;连结CD.若AB=8,AC=3,则△ACD的周长为11.【考点】作图—基本作图;线段垂直平分线的性质.【分析】根据作图可得MN是BC的垂直平分线,根据线段垂直平分线的性质可得CD=DB,然后可得AD+CD=8,进而可得△ACD的周长.【解答】解:根据作图可得MN是BC的垂直平分线,∵MN是BC的垂直平分线,∴CD=DB,∵AB=8,∴CD+AD=8,∴△ACD的周长为:3+8=11,故答案为:11.12.如图,在平面直角坐标系中,点A的坐标为(0,4),△OAB沿x轴向右平移后得到△O′A′B′,点A的对应点A′是直线y=x上一点,则点B与其对应点B′间的距离为5.【考点】一次函数图象上点的坐标特征;坐标与图形变化-平移.【分析】根据平移的性质知BB′=AA′.由一次函数图象上点的坐标特征可以求得点A′的坐标,所以根据两点间的距离公式可以求得线段AA′的长度,即BB′的长度.【解答】解:如图,连接AA′、BB′.∵点A的坐标为(0,4),△OAB沿x轴向右平移后得到△O′A′B′,∴点A′的纵坐标是4.又∵点A的对应点在直线y=x上一点,∴4=x,解得x=5.∴点A′的坐标是(5,4),∴AA′=5.∴根据平移的性质知BB′=AA′=5.故答案为:5.13.如图,点E在正方形ABCD的边CD上.若△ABE的面积为8,CE=3,则线段BE的长为5.【考点】正方形的性质;三角形的面积;勾股定理.【分析】根据正方形性质得出AD=BC=CD=AB,根据面积求出EM,得出BC=4,根据勾股定理求出即可.【解答】解:过E作EM⊥AB于M,∵四边形ABCD是正方形,∴AD=BC=CD=AB,∴EM=AD
本文标题:长春外国语学校2016届九年级上期中数学试卷含答案解析
链接地址:https://www.777doc.com/doc-7542848 .html