您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2016-2017学年九年级上第一次月考数学试卷含答案解析
陕西省西安七十中2016-2017学年九年级(上)第一次月考数学试卷(解析版)24一、选择题(共10题,每题3分,满分30分.每小题只有一个正确的选项,请在答题卡的相应位置填涂)w1.方程x2﹣3x=0的解是()tA.x=3B.x1=0,x2=3C.x1=0,x2=﹣3D.x1=1,x2=﹣3h2.已知一元二次方程的两根之和是3,两根之积是﹣2,则这个方程是()YA.x2+3x﹣2=0B.x2+3x+2=0C.x2﹣3x+2=0D.x2﹣3x﹣2=063.用配方法将二次三项式x2+4x﹣96变形,结果为()OA.(x+2)2+100B.(x﹣2)2﹣100C.(x+2)2﹣100D.(x﹣2)2+10054.如图所示,四边形ABCD为矩形,点O为对角线的交点,∠BOC=120°,AE⊥BO交BO于点E,AB=4,则BE等于()IA.4B.3C.2D.1a5.下列说法正确的是()hA.对角线相等且互相垂直的四边形是菱形PB.对角线互相垂直平分的四边形是正方形6C.对角线互相垂直的四边形是平行四边形yD.对角线相等且互相平分的四边形是矩形66.某药品经过两次降价,每瓶零售价由168元降为128元.已知两次降价的百分率相同,每次降价的百分率为x,根据题意列方程得()8A.168(1+x)2=128B.168(1﹣x)2=128C.168(1﹣2x)=128D.168(1﹣x2)=128Z7.同时投掷2颗均匀的股子,朝上一面点数的和是偶数的概率是()kA.0B.C.D.148.甲从标有1,2,3,4的4张卡片中任抽1张,然后放回.乙再在4张卡片中任抽1张两人抽到的标号的和是2的倍数的(包括2)概率是()0A.B.C.D.A9.如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为()fA.14B.15C.16D.17A10.如图,已知矩形ABCD中,R、P分别是DC、BC上的点,E、F分别是AP、RP的中点,当P在BC上从B向C移动而R不动时,那么下列结论成立的是()=A.线段EF的长逐渐增大B.线段EF的长逐渐减小=C.线段EF的长不改变D.线段EF的长不能确定二、填空题(共6题,每题3分,共18分.请将答案填入答题卡的相应位置)11.已知方程x2+kx﹣2=0的一个根是1,则另一个根是,k的值是.12.关于x的一元二次方程ax2+2x+1=0有两个不相等的实数根,则实数a的取值范围是.13.一道选择题有A,B,C,D4个选项,只有1个选项是正确的.若两位同学随意任选1个答案,则同时选对的概率为.14.现有6张扑克牌,牌面分别是方块l,2,3和草花2,3,4、小红从草花和方块里各摸1张牌,摸到2张牌上的数之和是5的概率是.15.如图,在矩形ABCD中,AB=6,AD=8,将BC沿对角线BD对折,C点落在E点上,BE交AD于F,则AF的长为.16.如图,在边长为2cm的正方形ABCD中,点Q为BC边的中点,点P为对角线AC上一动点,连接PB、PQ,则△PBQ周长的最小值为cm(结果不取近似值).三、解答题:(17题12分,18题6分,19题8分,20题8分,21题8分,22题10分,共6大题,满分52分,请在答题卡的相应位置解答)17.解下列方程(1)x2﹣8x+9=0(2)(2x﹣3)(x﹣4)=0(3)2(x﹣3)2=x﹣3.18.已知:菱形ABCD中,对角线AC=16cm,BD=12cm,BE⊥DC于点E,求菱形ABCD的面积和BE的长.19.小明有3双黑袜子和1双白袜子,假设袜子不分左右,那么从中随机抽取2只恰好配成一双的概率是多少?如果袜子分左右呢?20.如图,已知正方形ABCD,点E是AB上的一点,连接CE,以CE为一边,在CE的上方作正方形CEFG,连接DG.求证:△CBE≌△CDG.21.将进货单价为40元的商品按50元售出时,就能卖出500个.已知这种商品每个涨价1元,其销售量就减少10个,问为了赚得8000元的利润,而成本价又不高于10000元,售价应定为多少?这时应进货多少个?22.如图,△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,求AD的长.小萍同学灵活运用轴对称知识,将图形进行翻折变换,巧妙地解答了此题.请按照小萍的思路,探究并解答下列问题:(1)分别以AB、AC为对称轴,画出△ABD、△ACD的轴对称图形,D点的对称点为E、F,延长EB、FC相交于G点,证明四边形AEGF是正方形;(2)设AD=x,利用勾股定理,建立关于x的方程模型,求出x的值.2016-2017学年陕西省西安七十中九年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(共10题,每题3分,满分30分.每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.方程x2﹣3x=0的解是()A.x=3B.x1=0,x2=3C.x1=0,x2=﹣3D.x1=1,x2=﹣3【考点】解一元二次方程-因式分解法.【分析】方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【解答】解:方程变形得:x(x﹣3)=0,可得x=0或x﹣3=0,解得:x1=0,x2=3.故选B.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.2.已知一元二次方程的两根之和是3,两根之积是﹣2,则这个方程是()A.x2+3x﹣2=0B.x2+3x+2=0C.x2﹣3x+2=0D.x2﹣3x﹣2=0【考点】根与系数的关系.【分析】根据根与系数的关系可写出二次项系数为1的一元二次方程,然后对各选项进行判断.【解答】解:∵一元二次方程的两根之和是3,两根之积是﹣2,∴这个一元二次方程可为x2﹣3x﹣2=0.故选D.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.3.用配方法将二次三项式x2+4x﹣96变形,结果为()A.(x+2)2+100B.(x﹣2)2﹣100C.(x+2)2﹣100D.(x﹣2)2+100【考点】配方法的应用.【分析】此题考查了配方法,若二次项的系数为1,则常数项为一次项系数的一半的平方,若二次项系数不是1,则可先提取二次项系数,将其化为1即可.【解答】解:x2+4x﹣96=x2+4x+4﹣4﹣96=(x+2)2﹣100故选C.【点评】此题考查了学生的应用能力,解题时注意常数项的变化,在变形的过程中注意检查不要改变式子的值.4.如图所示,四边形ABCD为矩形,点O为对角线的交点,∠BOC=120°,AE⊥BO交BO于点E,AB=4,则BE等于()A.4B.3C.2D.1【考点】矩形的性质.【分析】由矩形的性质得出OA=OB,证出△AOB是等边三角形,得出OB=AB=4,再由等边三角形的三线合一性质得出BE=OB=2即可.【解答】解:∵四边形ABCD是矩形,∴OA=AC,OB=BD,AC=BD,∴OA=OB,∵∠BOC=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴OB=AB=4,∵AE⊥BO,∴BE=OB=2.故选C【点评】本题考查了矩形的性质、等边三角形的判定与性质;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.5.下列说法正确的是()A.对角线相等且互相垂直的四边形是菱形B.对角线互相垂直平分的四边形是正方形C.对角线互相垂直的四边形是平行四边形D.对角线相等且互相平分的四边形是矩形【考点】正方形的判定;平行四边形的判定;菱形的判定;矩形的判定.【分析】分别根据菱形、正方形、平行四边形和矩形的判定逐项判断即可.【解答】解:对角线相等且互相垂直的四边形不一定是平行四边形,更不一定是菱形,故A不正确;对角线互相垂直平分的四边形为菱形,但不一定是正方形,故B不正确;对角线互相垂直的四边形,其对角线不一定会平分,故不一定是平行四边形,故C不正确;对角线互相平分说明四边形为平行四边形,又对角线相等,可知其为矩形,故D正确;故选D.【点评】本题主要考查平行四边形及特殊平行四边形的判定,掌握平行四边形及特殊平行四边形的对角线所满足的条件是解题的关键.6.某药品经过两次降价,每瓶零售价由168元降为128元.已知两次降价的百分率相同,每次降价的百分率为x,根据题意列方程得()A.168(1+x)2=128B.168(1﹣x)2=128C.168(1﹣2x)=128D.168(1﹣x2)=128【考点】由实际问题抽象出一元二次方程.【分析】设每次降价的百分率为x,根据降价后的价格=降价前的价格(1﹣降价的百分率),则第一次降价后的价格是168(1﹣x),第二次后的价格是168(1﹣x)2,据此即可列方程求解.【解答】解:根据题意得:168(1﹣x)2=128,故选B.【点评】此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程即可.7.同时投掷2颗均匀的股子,朝上一面点数的和是偶数的概率是()A.0B.C.D.1【考点】列表法与树状图法.【分析】画树状图展示所有36种等可能的结果数,再找出朝上一面点数的和是偶数的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有36种等可能的结果数,其中朝上一面点数的和是偶数的结果数为18,所以朝上一面点数的和是偶数的概率==.故选C.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.8.甲从标有1,2,3,4的4张卡片中任抽1张,然后放回.乙再在4张卡片中任抽1张两人抽到的标号的和是2的倍数的(包括2)概率是()A.B.C.D.【考点】列表法与树状图法.【分析】抽2次总共有4×4=16种情况,计算出和是偶数的情况个数,利用概率公式进行计算.【解答】解:123412345234563456745678故是2的倍数的(包括2)概率是.故选A.【点评】如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=;易错点是得到两人抽到的标号的和是2的倍数的总情况数.9.如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为()A.14B.15C.16D.17【考点】菱形的性质;等边三角形的判定与性质;正方形的性质.【分析】根据菱形得出AB=BC,得出等边三角形ABC,求出AC,长,根据正方形的性质得出AF=EF=EC=AC=4,求出即可.【解答】解:∵四边形ABCD是菱形,∴AB=BC,∵∠B=60°,∴△ABC是等边三角形,∴AC=AB=4,∴正方形ACEF的周长是AC+CE+EF+AF=4×4=16,故选C.【点评】本题考查了菱形性质,正方形性质,等边三角形的性质和判定的应用,关键是求出AC的长.10.如图,已知矩形ABCD中,R、P分别是DC、BC上的点,E、F分别是AP、RP的中点,当P在BC上从B向C移动而R不动时,那么下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐减小C.线段EF的长不改变D.线段EF的长不能确定【考点】三角形中位线定理.【分析】因为R不动,所以AR不变.根据中位线定理,EF不变.【解答】解:连接AR.因为E、F分别是AP、RP的中点,则EF为△APR的中位线,所以EF=AR,为定值.所以线段EF的长不改变.故选:C.【点评】本题考查了三角形的中位线定理,只要三角形的边AR不变,则对应的中位线的长度就不变.二、填空题(共6题,每题3分,共18分.请将答案填入答题卡的相应位置)11.已知方程x2+kx﹣2=0的一个根是1,则另一个根是﹣2,k的值是1.【考点】根与系数的关系.【分析】可将该方程的已知根1代入两根之积公式和两根之和公式列出方程组,解方程组即可求出k值和方程的另一根.【解答】解:设方程的也另一根为x1,又∵x=1,∴,解得x1=﹣2,k=1.【点评】此题也可先将x=1代入方程x2+kx﹣2
本文标题:2016-2017学年九年级上第一次月考数学试卷含答案解析
链接地址:https://www.777doc.com/doc-7543190 .html