您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 【解析版】怀宁县金拱中学2015届九年级上第一次月考数学试卷
安徽省安庆市怀宁县金拱中学2015届九年级上学期第一次月考数学试卷一.选择题(每题4分,满分40分)1.抛物线y=﹣2x2+8x﹣1的顶点坐标为()A.(﹣2,7)B.(﹣2,﹣25)C.(2,7)D.(2,﹣9)2.抛物线y=a(x+1)(x﹣3)(a≠0)的对称轴是直线()A.x=1B.x=﹣1C.x=﹣3D.x=33.若二次函数y=﹣x2+bx+c的图象的最高点是(﹣1,﹣3),则b、c的值分别是()A.b=2,c=4B.b=﹣2,c=﹣4C.b=2,c=﹣4D.b=﹣2,c=44.若M(﹣1,y1),N(1,y2),P(2,y3)三点都在函数y=(k<0)的图象上,则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y3>y1>y2D.y3>y2>y15.抛物线y=x2向左平移3个单位,再向下平移2个单位后,所得的抛物线表达式是()A.y=(x+3)2﹣2B.y=(x﹣3)2+2C.y=(x﹣3)2﹣2D.y=(x+3)2+26.在同一平面直角坐标系中,一次函数y=kx﹣1与反比例函数y=(其中k≠0)的图象的形状大致是()A.B.C.D.7.对于反比例函数,下列说法中不正确的是()A.点(﹣2,﹣1)在它的图象上B.它的图象在第一、三象限C.y随x的增大而减小D.当x<0时,y随x的增大而减小8.给出下列四个函数:①y=﹣x;②y=x;③y=;④y=x2.x<0时,y随x的增大而减小的函数有()A.1个B.2个C.3个D.4个9.抛物线y=﹣x2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:x…﹣2﹣1012…y…04664…从上表可知,下列说法正确的个数是()①抛物线与x轴的一个交点为(﹣2,0);②抛物线与y轴的交点为(0,6);③抛物线的对称轴是x=1;④在对称轴左侧y随x增大而增大.A.1B.2C.3D.410.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,x=﹣1是对称轴,有下列判断:①b﹣2a=0;②4a﹣2b+c<0;③a﹣b+c=﹣9a;④若(﹣3,y1),(,y2)是抛物线上两点,则y1>y2,其中正确的是()A.①②③B.①③④C.①②④D.②③④二.填空题(每题5分,满分20分)11.写一个开口向上,对称轴为x=1,且与y轴的交点坐标为(0,2)的抛物线的解析式.12.已知函数y=kx2+x+1的图象与x轴只有一个交点,则k=.13.如图,在平面直角坐标系中,反比例函数y1=的图象与一次函数y2=kx+b的图象交于A、B两点.若y1<y2,则x的取值范围是.14.如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数y=的图象上,OA=1,OC=6,则正方形ADEF的边长为.三.(每小题8分,满分16分)15.已知y=y1+y2,y1与x成反比例,y2与x成正比例,并且当x=2时y=7,当x=3时,y=8,求y与x的函数解析式.16.抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0),B(3,0)两点,与y轴交于点C(0,﹣3).(1)求该抛物线的解析式及顶点M的坐标;(2)求△BCM的面积与△ABC的面积的比.四.(每小题8分,满分16分)17.如图,二次函数y=﹣x2+mx+3的图象与y轴交于点A,与x轴的负半轴交于点B,且△AOB的面积为6.(1)求该二次函数的表达式;(2)如果点P在x轴上,且△ABP是等腰三角形,请直接写出点P的坐标.18.如图,在平面直角坐标系中,过点M(0,2)的直线l与x轴平行,且直线l分别与反比例函数y=(x>0)和y=(x<0)的图象交于点P、点Q.(1)求点P的坐标;(2)若△POQ的面积为8,求k的值.五.(每小题10分,满分20分)19.某商场要经营一种新上市的文具,进价为20元/件.试营销阶段发现:当销售单价是25元时,每天的销售量为250件;销售单价每上涨1元,每天的销售量就减少10件.(1)写出商场销售这种文具,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;(2)求销售单价为多少元时,该文具每天的销售利润最大;(3)商场的营销部结合上述情况,提出了A、B两种营销方案:方案A:该文具的销售单价高于进价且不超过30元;方案B:每天销售量不少于10件,且每件文具的利润至少为25元.请比较哪种方案的最大利润更高,并说明理由.20.实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y(毫克/百毫升)与时间x(时)的关系可近似地用二次函数y=﹣200x2+400x刻画;1.5小时后(包括1.5小时)y与x可近似地用反比例函数y=(k>0)刻画(如图所示).(1)根据上述数学模型计算:①喝酒后几时血液中的酒精含量达到最大值?最大值为多少?②当x=5时,y=45,求k的值.(2)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班?请说明理由.六.(本题满分12分)21.东海体育用品商场为了推销某一运动服,先做了市场调查,得到数据如下表:卖出价格x(元/件)50515253…销售量p(件)500490480470…(1)以x作为点的横坐标,p作为纵坐标,把表中的数据,在图中的直角坐标系中描出相应的点,观察连接各点所得的图形,判断p与x的函数关系式;(2)如果这种运动服的买入价为每件40元,试求销售利润y(元)与卖出价格x(元/件)的函数关系式(销售利润=销售收入﹣买入支出);(3)在(2)的条件下,当卖出价为多少时,能获得最大利润?七.(本题满分12分)22.某研究所将某种材料加热到1000℃时停止加热,并立即将材料分为A、B两组,采用不同工艺做降温对比实验,设降温开始后经过xmin时,A、B两组材料的温度分别为yA℃、yB℃,yA、yB与x的函数关系式分别为yA=kx+b,yB=(x﹣60)2+m(部分图象如图所示),当x=40时,两组材料的温度相同.(1)分别求yA、yB关于x的函数关系式;(2)当A组材料的温度降至120℃时,B组材料的温度是多少?(3)在0<x<40的什么时刻,两组材料温差最大?八.(本题满分14分)23.已知抛物线y=x2+(2n﹣1)x+n2﹣1(n为常数).(1)当该抛物线经过坐标原点,并且顶点在第四象限时,求出它所对应的函数关系式;(2)设A是(1)所确定的抛物线上位于x轴下方、且在对称轴左侧的一个动点,过A作x轴的平行线,交抛物线于另一点D,再作AB⊥x轴于B,DC⊥x轴于C.①当BC=1时,求矩形ABCD的周长;②试问矩形ABCD的周长是否存在最大值?如果存在,请求出这个最大值,并指出此时A点的坐标.如果不存在,请说明理由.安徽省安庆市怀宁县金拱中学2015届九年级上学期第一次月考数学试卷一.选择题(每题4分,满分40分)1.抛物线y=﹣2x2+8x﹣1的顶点坐标为()A.(﹣2,7)B.(﹣2,﹣25)C.(2,7)D.(2,﹣9)考点:二次函数的性质.分析:代入顶点坐标公式,或用配方法将抛物线解析式写成顶点式,确定顶点坐标.解答:解:∵y=﹣2x2+8x﹣1=﹣2(x﹣2)2+7,∴顶点坐标为(2,7).故选C.点评:要求学生熟记顶点坐标公式或者配方法的解题思路.2.抛物线y=a(x+1)(x﹣3)(a≠0)的对称轴是直线()A.x=1B.x=﹣1C.x=﹣3D.x=3考点:二次函数的图象.分析:已知抛物线解析式为交点式,通过解析式可求抛物线与x轴的两交点坐标;两交点的横坐标的平均数就是对称轴.解答:解:∵﹣1,3是方程a(x+1)(x﹣3)=0的两根,∴抛物线y=a(x+1)(x﹣3)与x轴交点横坐标是﹣1,3,∵这两个点关于对称轴对称,∴对称轴是x==1.故选A.点评:此题考查对称轴的性质:抛物线上的两点纵坐标相同时,对称轴是两点横坐标的平均数.3.若二次函数y=﹣x2+bx+c的图象的最高点是(﹣1,﹣3),则b、c的值分别是()A.b=2,c=4B.b=﹣2,c=﹣4C.b=2,c=﹣4D.b=﹣2,c=4考点:二次函数的最值.专题:函数思想.分析:根据二次函数y=﹣x2+bx+c的二次项系数﹣1来确定该函数的图象的开口方向,由二次函数y=﹣x2+bx+c的图象的最高点是(﹣1,﹣3)确定该函数的顶点坐标,然后根据顶点坐标公式解答b、c的值.解答:解:∵二次函数y=﹣x2+bx+c的二次项系数﹣1<0,∴该函数的图象的开口方向向下,∴二次函数y=﹣x2+bx+c的图象的最高点坐标(﹣1,﹣3)就是该函数的顶点坐标,∴﹣1=﹣,即b=﹣2;①﹣3=,即b2+4c﹣12=0;②由①②解得,b=﹣2,c=﹣4;故选B.点评:本题考查了二次函数的最值.解答此题时,弄清楚“二次函数y=﹣x2+bx+c的图象的最高点坐标(﹣1,﹣3)就是该函数的顶点坐标”是解题的关键.4.若M(﹣1,y1),N(1,y2),P(2,y3)三点都在函数y=(k<0)的图象上,则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y3>y1>y2D.y3>y2>y1考点:反比例函数图象上点的坐标特征.分析:根据题意画出图形,结合反比例函数的增减性,(﹣1,y1)在第二象限,则y3最大,(1,y2)、(2,y3)在第四象限,y随x的增大而增大,则y3>y2,故可得出答案.解答:解:∵k<0,函数图象如图,∴图象在第二、四象限,在每个象限内,y随x的增大而增大,∵﹣1<1<2,∴y1>y3>y2.故选B.点评:本题考查了由反比例函数图象的性质判断函数图象上点的坐标特征,同学们应重点掌握.5.抛物线y=x2向左平移3个单位,再向下平移2个单位后,所得的抛物线表达式是()A.y=(x+3)2﹣2B.y=(x﹣3)2+2C.y=(x﹣3)2﹣2D.y=(x+3)2+2考点:二次函数图象与几何变换.分析:变化规律:左加右减,上加下减.解答:解:按照“左加右减,上加下减”的规律,y=x2向左平移3个单位,再向下平移2个单位得y=(x+3)2﹣2.故选A.点评:考查了抛物线的平移以及抛物线解析式性质.6.在同一平面直角坐标系中,一次函数y=kx﹣1与反比例函数y=(其中k≠0)的图象的形状大致是()A.B.C.D.考点:反比例函数的图象;一次函数的图象.专题:压轴题.分析:比例系数相同,两个函数必有交点,然后根据比例系数的符号确定正确选项即可.解答:解:k>0时,一次函数y=kx﹣1的图象经过第一、三、四象限,反比例函数y=的两个分支分别位于第一、三象限,无选项符合;k<0时,一次函数y=kx﹣1的图象经过第二、三、四象限,反比例函数y=的两个分支分别位于第二、四象限,选项C符合.故选C.点评:本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.7.对于反比例函数,下列说法中不正确的是()A.点(﹣2,﹣1)在它的图象上B.它的图象在第一、三象限C.y随x的增大而减小D.当x<0时,y随x的增大而减小考点:反比例函数的性质.分析:根据反比例函数的性质用排除法解答,当系数k>0时,函数图象在第一、三象限,当x>0或x<0时,y随x的增大而减小,据此可以得到答案.解答:解:A、把点(﹣2,﹣1)代入反比例函数y=得﹣1=﹣1,本选项正确;B、∵k=2>0,∴图象在第一、三象限,本选项正确;C、当x>0时,y随x的增大而减小,本选项不正确;D、当x<0时,y随x的增大而减小,本选项正确.故选C.点评:本题考查了反比例函数y=(k≠0)的性质:①当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.8.给出下列四个函数:①y=﹣x;②y=x;③y=;④y=x2.x<0时,y随
本文标题:【解析版】怀宁县金拱中学2015届九年级上第一次月考数学试卷
链接地址:https://www.777doc.com/doc-7543222 .html