您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 绵阳市三台县2017届九年级上第二次月考数学试卷含答案解析
2016-2017学年四川省绵阳市三台县九年级(上)第二次月考数学试卷一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列图形既是中心对称又是轴对称图形的是()A.B.C.D.2.关于x的一元二次方程ax2﹣x+1=0有实数根,则a的取值范围是()A.a≤且a≠0B.a≤C.a≥且a≠0D.a≥3.已知⊙O半径为3,M为直线AB上一点,若MO=3,则直线AB与⊙O的位置关系为()A.相切B.相交C.相切或相离D.相切或相交4.对于一般的二次函数y=x2+bx+c,经过配方可化为y=(x﹣1)2+2,则b,c的值分别为()A.5,﹣1B.2,3C.﹣2,3D.﹣2,﹣35.已知点A(m,1)与点B(5,n)关于原点对称,则m和n的值为()A.m=5,n=﹣1B.m=﹣5,n=1C.m=﹣1,n=﹣5D.m=﹣5,n=﹣16.如图,AB是⊙O的直径,C、D是⊙O上一点,∠CDB=20°,过点C作⊙O的切线交AB的延长线于点E,则∠E等于()A.40°B.50°C.60°D.70°7.如图,直线l1的解析式为y=﹣3x,将直线l1顺时针旋转90°得到直线l2,则l2的解析式为()A.y=xB.y=xC.y=x+3D.y=x8.抛物线y=x2+bx+c图象向右平移2个单位再向下平移3个单位,所得图象的解析式为y=x2﹣2x﹣3,则b、c的值为()A.b=2,c=2B.b=2,c=0C.b=﹣2,c=﹣1D.b=﹣3,c=29.如图,四边形ABCD中,∠BAD=∠ACB=90°,AB=AD,AC=4BC,设CD的长为x,四边形ABCD的面积为y,则y与x之间的函数关系式是()A.y=B.y=C.y=D.y=10.把一张圆形纸片和一张含45°角的扇形纸片如图所示的方式分别剪得一个正方形,如果所剪得的两个正方形边长都是1,那么圆形纸片和扇形纸片的面积比是()A.4:5B.2:5C.:2D.:11.已知如图,圆锥的母线长6cm,底面半径是3cm,在B处有一只蚂蚁,在AC中点P处有一颗米粒,蚂蚁从B爬到P处的最短距离是()A.3cmB.3cmC.9cmD.6cm12.已知二次函数y=ax2+bx+c的图象与x轴交于点(﹣2,0),(x1,0),且1<x1<2,与y轴的正半轴的交点在(0,2)的下方,下列结论:①a<b<c;②2a+c>0;③4a+c<0;④2a﹣b+1>0.其中正确结论的个数为()A.1B.2C.3D.4二、填空题13.已知x=﹣1是一元二次方程ax2+bx﹣2=0的一个根,那么b﹣a的值等于.14.函数的图象是抛物线,则m=.15.三角形的每条边的长都是方程x2﹣6x+8=0的根,则三角形的周长是.16.如图,方格纸上一圆经过(2,6)、(﹣2,2)、(2,﹣2)、(6,2)四点,则该圆圆心的坐标为.17.已知方程x2﹣2x﹣1=0的两根为m和n,则代数式m3﹣2m2﹣n+﹣mn2=.18.如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是的中点,CE⊥AB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CE、CB于点P、Q,连接AC,关于下列结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心,其中正确结论是(只需填写序号).三、解答题(本大题共6个小题,共86分)19.用适当的方法解方程:(1)5x2﹣3x=x+1(2)(x﹣4)2=(5﹣2x)2.20.如图1,四边形ABCD是正方形,△ADE经旋转后与△ABF重合.(1)旋转中心是;(2)旋转角是度;(3)如果连接EF,那么△AEF是三角形.(4)用上述思想或其他方法证明:如图2,在正方形ABCD中,点E、F分别在BC、CD上,且∠EAF=45°.求证:EF=BE+DF.21.已知关于x的一元二次方程x2﹣(2m+1)x+m(m+1)=0.(1)求证:无论m取何值,方程总有两个不相等的实数根;(2)若△ABC的两边AB、AC的长是这个方程的两个实数根,且BC=8,当△ABC为等腰三角形时,求m的值.22.如图示:学校九年级的一场篮球比赛中,队员甲正在投篮,已知球出手时离地面高为米,与篮筐中心的水平距离为7米,当球出手后球与队员甲的水平距离为4米时球达到最大高度4米,设篮球运行的轨迹为抛物线,篮筐距地面3米.(1)建立如图的平面直角坐标系,问此球能否准确投中?(2)此时,若对方队员乙在甲面前1米处跳起盖帽拦截,已知乙的最大摸高为3.1米,那么他能否获得成功?23.如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=12cm,AD=13cm,BC=22cm,AB是⊙O的直径,动点P从点A出发向点D以1cm/s的速度运动,动点Q从点C出发向点B以2cm/s的速度运动.点P、Q同时出发,其中一个点停止时,另一个点也停止运动.设运动时间为t秒.(1)求当t为何值时,PQ与⊙O相切?(2)直接写出PQ与⊙O相交时t的取值范围.24.如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.以AB上某一点O为圆心作⊙O,使⊙O经过点A和点D.(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若AC=3,∠B=30°.①求⊙O的半径;②设⊙O与AB边的另一个交点为E,求线段BD、BE与劣弧DE所围成的阴影部分的图形面积.(结果保留根号和π)25.如图,直线y1=﹣x+2与x轴,y轴分别交于B,C,抛物线y=ax2+bx+c(a≠0)经过点A,B,C,点A坐标为(﹣1,0).(1)求抛物线的解析式;(2)抛物线的对称轴与x轴交于点D,连接CD,点P是直线BC上方抛物线上的一动点(不与B,C重合),当点P运动到何处时,四边形PCDB的面积最大?求出此时四边形PCDB面积的最大值和点P坐标;(3)在抛物线上的对称轴上:是否存在一点M,使|MA﹣MC|的值最大;是否存在一点N,使△NCD是以CD为腰的等腰三角形?若存在,直接写出点M,点N的坐标;若不存在,请说明理由.2016-2017学年四川省绵阳市三台县九年级(上)第二次月考数学试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列图形既是中心对称又是轴对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【解答】解:A、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误.B、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;C、此图形旋转180°后不能与原图形重合,此图形不是中心对称图形,是轴对称图形,故此选项错误;D、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确.故选:D.【点评】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.2.关于x的一元二次方程ax2﹣x+1=0有实数根,则a的取值范围是()A.a≤且a≠0B.a≤C.a≥且a≠0D.a≥【考点】根的判别式.【分析】根据一元二次方程的定义和根的判别式的意义得到a≠0且△=1﹣4×a×1≥0,然后求出a的取值范围,据此选择正确选项.【解答】解:∵关于x的一元二次方程ax2﹣x+1=0有实数根,∴△≥0且a≠0,∴(﹣1)2﹣4a≥0且a≠0,∴a≤且a≠0,故选:A.【点评】本题考查了一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.3.已知⊙O半径为3,M为直线AB上一点,若MO=3,则直线AB与⊙O的位置关系为()A.相切B.相交C.相切或相离D.相切或相交【考点】直线与圆的位置关系.【分析】直线和圆的位置关系与数量之间的联系:若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.【解答】解:因为垂线段最短,所以圆心到直线的距离小于等于3.此时和半径3的大小不确定,则直线和圆相交、相切都有可能.故选D.【点评】本题考查了直线与圆的位置关系,判断直线和圆的位置关系,必须明确圆心到直线的距离.特别注意:这里的3不一定是圆心到直线的距离.4.对于一般的二次函数y=x2+bx+c,经过配方可化为y=(x﹣1)2+2,则b,c的值分别为()A.5,﹣1B.2,3C.﹣2,3D.﹣2,﹣3【考点】二次函数的三种形式.【分析】首先把y=(x﹣1)2+2展成一般形式,根据两个函数是同一个,则对应项的系数相同,即可求得b,c的值.【解答】解:y=(x﹣1)2+2=x2﹣2x+3,∴b=﹣2,c=3,故选:C.【点评】本题主要考查了二次函数的不同形式,正确把顶点式形式化成一般式是解题的关键.5.已知点A(m,1)与点B(5,n)关于原点对称,则m和n的值为()A.m=5,n=﹣1B.m=﹣5,n=1C.m=﹣1,n=﹣5D.m=﹣5,n=﹣1【考点】关于原点对称的点的坐标.【分析】根据关于原点对称,则两点的横、纵坐标都是互为相反数,可得答案.【解答】解:点A(m,1)与点B(5,n)关于原点对称,得m=﹣5,n=﹣1.故选:D.【点评】本题考查了关于原点对称的点的坐标,关于原点对称则两点的横、纵坐标都是互为相反数,可得答案.6.如图,AB是⊙O的直径,C、D是⊙O上一点,∠CDB=20°,过点C作⊙O的切线交AB的延长线于点E,则∠E等于()A.40°B.50°C.60°D.70°【考点】切线的性质;圆周角定理.【专题】计算题.【分析】连接OC,由CE为圆O的切线,根据切线的性质得到OC垂直于CE,即三角形OCE为直角三角形,再由同弧所对的圆心角等于所对圆周角的2倍,由圆周角∠CDB的度数,求出圆心角∠COB的度数,在直角三角形OCE中,利用直角三角形的两锐角互余,即可求出∠E的度数.【解答】解:连接OC,如图所示:∵圆心角∠BOC与圆周角∠CDB都对,∴∠BOC=2∠CDB,又∠CDB=20°,∴∠BOC=40°,又∵CE为圆O的切线,∴OC⊥CE,即∠OCE=90°,则∠E=90°﹣40°=50°.故选B【点评】此题考查了切线的性质,圆周角定理,以及直角三角形的性质,遇到直线与圆相切,连接圆心与切点,利用切线的性质得垂直,根据直角三角形的性质来解决问题.熟练掌握性质及定理是解本题的关键.7.如图,直线l1的解析式为y=﹣3x,将直线l1顺时针旋转90°得到直线l2,则l2的解析式为()A.y=xB.y=xC.y=x+3D.y=x【考点】一次函数图象与几何变换.【分析】先在直线y=﹣3x上任意选取一个点,根据点(a,b)绕原点顺时针旋转90°得到的点的坐标是(b,﹣a),得到它们绕原点顺时针旋转90°以后对应点的坐标,然后根据待定系数法求解即可得出答案.【解答】解:在直线y=﹣3x上任意选取一个点(1,﹣3),它们绕原点O顺时针旋转90°得到的点的直线过(﹣3,﹣1)点,设直线解析式是y=kx,则﹣3k=﹣1,解得:k=,则l2的解析式为y=x.故选A.【点评】本题考查一次函数图象与几何变换的知识,难度适中,掌握点(a,b)绕原点顺时针旋转90°以后的点的坐标是(b,﹣a),可以提高解题速度.8.抛物线y=x2+bx+c图象向右平移2个单位再向下平移3个单位,所得图象的解析式为y=x2﹣2x﹣3,则b、c的值为()A.b=2,c=2B.b=2,c=0C.b=﹣2,c=﹣1D.b=﹣3,c=2【考点】二次函数图象与几何变换.【专题】压轴题.【分析】易得新抛物线的顶点,根据平移转换可得原抛物线顶点,根据顶点式及平移前后二次项的系数不变可得原抛物线的解析式,展开即可得到b,c的值.【解答】解:由题意得新抛物线的顶点为(1,﹣4),∴原抛物线的顶点为(﹣1,﹣1),设原抛物线的解
本文标题:绵阳市三台县2017届九年级上第二次月考数学试卷含答案解析
链接地址:https://www.777doc.com/doc-7543365 .html