您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 重庆市江北区2017届九年级上月考数学试卷(12月)含答案解析
2016-2017学年重庆市江北区九年级(上)月考数学试卷(12月份)一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.下列图案是几种名车标志,其中属于中心对称图形的是()A.1个B.2个C.3个D.4个2.如图,圆O是△ABC的外接圆,∠A=68°,则∠BOC的大小是()A.22°B.32°C.136°D.68°3.下列事件:①在足球赛中,弱队战胜强队;②抛掷一枚硬币,落地正面朝上;③任取两个负数,其积大于0;④长分别为3、5、9厘米的三条线段不能围成一个三角形.其中确定事件的个数是()个.A.1B.2C.3D.44.有一个正方体,6个面上分别标有1~6这6个整数,投掷这个正方体一次,则出现向上一面的数字为偶数的概率是()A.B.C.D.5.一个小球在如图所示的地板上随意滚动,当小球停下时,最终停在地板上阴影部分的概率是()A.B.C.D.6.60°的圆心角所对的弧长是3πcm,则此弧所在圆的半径是()A.6cmB.7cmC.8cmD.9cm7.如图,D、E分别是△ABC的边AB、AC上的点,DE∥BC,若DE:BC=1:3,则S△AED:S△BCA的值为()A.B.C.D.8.双曲线y=(1﹣m)x,当x>0时,y随x的增大而减小,则m=()A.2B.﹣2C.﹣2或者2D.49.如图,AB是⊙O的切线,B为切点,AC经过点O,与⊙O分别相交于点D、C.若∠CAB=30°,CD=2,则阴影部分面积是()A.B.C.﹣D.﹣10.如图,圆O的弦AB垂直平分半径OC,则四边形OACB一定是()A.正方形B.长方形C.菱形D.梯形11.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①ac<0;②a﹣b+c<0;③当x<0时,y<0;④方程ax2+bx+c=0(a≠0)有两个大于﹣1的实数根.其中正确的是()A.①②③B.①③④C.②③④D.①②④12.如图,反比例函数(x>0)的图象经过矩形OABC对角线的交点M,分别与AB、BC交于点D、E,若四边形ODBE的面积为9,则k的值为()A.1B.2C.3D.4二、填空题:(本大题共6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.已知反比例函数y=的图象经过点(2,﹣3),则此函数的关系式是.14.二次函数y=(x﹣1)2﹣2的顶点坐标是.15.如图,⊙O的直径CD=10,AB是⊙O的弦,AB⊥CD于M,且CM=2,则AB的长为.16.在拼图游戏中,从图(1)的四张纸片中,任取两张纸片,能拼成“房子”如图(2)的概率为.17.如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将△ABC绕点A逆时针旋转得到△AB′C′,AB′与BC相交于点D,当B′C′∥AB时,CD=.18.如图,正方形ABCD中,E为边AB上的中点,连接CE,将△BEC翻折,使点B落在点F处,对角线BD与CF,CE分别交于点N,M,CF的延长线与AD交于点G,如果正方形边长为4,则线段MN的长为.三、解答题:(本大题共2个小题,每小题7分,共14分)解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卡(卷)中对应的位置上.19.已知反比例函数y=的图象经过点M(2,1)(1)求该函数的表达式;(2)当2<x<4时,求y的取值范围(直接写出结果).20.如图,方格纸中的每个小方格都是边长为1个单位的正方形.Rt△ABC的顶点均在格点上,建立平面直角坐标系后,点A的坐标为(﹣4,1),点B的坐标为(﹣1,1).(1)将Rt△ABC绕点O顺时针旋转90°后得到Rt△A′B′C′,试在图中画出图形Rt△Rt△A′B′C′,并写出C′的坐标;(2)求弧的长.四、解答题:(本大题共4个小题,每小题10分,共40分)解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卡(卷)中对应的位置上.21.一个不透明的口袋中装有4个分别标有数1,2,3,4的小球,它们的形状、大小完全相同,小红先从口袋里随机摸出一个小球记下数为x,小颖在剩下的3个球中随机摸出一个小球记下数为y,这样确定了点P的坐标(x,y).(1)小红摸出标有数3的小球的概率是.(2)请你用列表法或画树状图法表示出由x,y确定的点P(x,y)所有可能的结果.(3)求点P(x,y)在函数y=﹣x+5图象上的概率.22.如图,用长为18m的篱笆(虚线部分),两面靠墙围成矩形的苗圃.(1)设矩形的一边为x(m),面积为y(m2),求y关于x的函数关系式,并写出自变量x的取值范围;(2)当x为何值时,所围苗圃的面积最大,最大面积是多少?23.实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y(毫克/百毫升)与时间x(时)的关系可近似地用二次函数y=﹣200x2+400x刻画;1.5小时后(包括1.5小时)y与x可近似地用反比例函数y=(k>0)刻画(如图所示).(1)根据上述数学模型计算:①当x=5时,y=45,求k的值.②喝酒后血液中的酒精含量不低于72毫克的时间持续了多长?(2)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班?请说明理由.24.如图,二次函数y=a(x+1)2+2的图象与x轴交于A,B两点,已知A(﹣3,0),根据图象回答下列问题.(1)求a的值和点B的坐标;(2)设抛物线的顶点是P,试求△PAB的面积;(3)在抛物线上是否存在点M,使得△MAB的面积等于△PAB的面积的2倍?若存在,求出点M的坐标.五、解答题:(本大题共2个小题,每小题12分,共24分)解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卡中对应的位置上.25.如图,已知等边△ABC中,D为边AC上一点.(1)以BD为边作等边△BDE,连接CE,求证:AD=CE;(2)如果以BD为斜边作Rt△BDE,且∠BDE=30°,连接CE并延长,与AB的延长线交于F点,求证:AD=BF;(3)若在(2)的条件的基础上,∠F=45°,CF=6,直接写出△AFC的面积.26.如图1,已知抛物线y=﹣x2﹣2x+a(a≠0)与y轴相交于A点,顶点为M,直线y=x﹣a分别与x轴、y轴相交于B,C两点,并且与直线MA相交于N点.(1)若直线BC和抛物线有两个不同交点,求a的取值范围,并用a表示交点M,A的坐标;(2)如图2,将△NAC沿着y轴翻转,若点N的对称点为P,AP与抛物线的对称轴相交于点D,连接CD.当a=时,判断点P是否落在在抛物线上,并求△PCD的面积;(3)在抛物线y=﹣x2﹣2x+a(a>0)上是否存在点Q,使得以Q,A,C,N为顶点的四边形是平行四边形?若存在,求出点Q的坐标;若不存在,请说明理由.2016-2017学年重庆市江北区徐悲鸿中学九年级(上)月考数学试卷(12月份)参考答案与试题解析一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.下列图案是几种名车标志,其中属于中心对称图形的是()A.1个B.2个C.3个D.4个【考点】中心对称图形.【分析】根据中心对称图形的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形可得答案.【解答】解:第二、三个图形是中心对称图形的图案,故选B.2.如图,圆O是△ABC的外接圆,∠A=68°,则∠BOC的大小是()A.22°B.32°C.136°D.68°【考点】圆周角定理;圆心角、弧、弦的关系.【分析】由⊙O是△ABC的外接圆,∠A=68°,根据在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得答案.【解答】解:∵⊙O是△ABC的外接圆,∠A=68°,∴∠BOC=2∠A=136°.故选C.3.下列事件:①在足球赛中,弱队战胜强队;②抛掷一枚硬币,落地正面朝上;③任取两个负数,其积大于0;④长分别为3、5、9厘米的三条线段不能围成一个三角形.其中确定事件的个数是()个.A.1B.2C.3D.4【考点】随机事件.【分析】确定事件就是必然事件或不可能事件,依据定义即可判断.【解答】解:①在足球赛中,弱队战胜强队是随机事件,命题错误;②抛掷一枚硬币,落地正面朝上是随机事件,命题错误;③任取两个负数,其积大于0是必然事件,是确定事件,命题正确;④长分别为3、5、9厘米的三条线段不能围成一个三角形.是确定事件,命题正确;故选B.4.有一个正方体,6个面上分别标有1~6这6个整数,投掷这个正方体一次,则出现向上一面的数字为偶数的概率是()A.B.C.D.【考点】概率公式.【分析】投掷这个正方体会出现1到6共6个数字,每个数字出现的机会相同,即有6个可能结果,而这6个数中有2,4,6三个偶数,则有3种可能.【解答】解:根据概率公式:P(出现向上一面的数字为偶数)=.故选C.5.一个小球在如图所示的地板上随意滚动,当小球停下时,最终停在地板上阴影部分的概率是()A.B.C.D.【考点】几何概率.【分析】根据几何概率的求法:最终停留在黑色的方砖上的概率就是黑色区域的面积与总面积的比值.【解答】解:观察这个图可知:黑色区域(3块)的面积占总面积(9块)的,故其概率为.故选:A6.60°的圆心角所对的弧长是3πcm,则此弧所在圆的半径是()A.6cmB.7cmC.8cmD.9cm【考点】弧长的计算.【分析】根据弧长公式求解即可.【解答】解:∵l=,∴r=═9,故选D.7.如图,D、E分别是△ABC的边AB、AC上的点,DE∥BC,若DE:BC=1:3,则S△AED:S△BCA的值为()A.B.C.D.【考点】相似三角形的判定与性质.【分析】根据相似三角形的判定和性质即可得到结论.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴S△AED:S△BCA=()2=,故选C.8.双曲线y=(1﹣m)x,当x>0时,y随x的增大而减小,则m=()A.2B.﹣2C.﹣2或者2D.4【考点】反比例函数的性质.【分析】根据反比例函数的定义列出方程求解,再根据它的性质决定解的取舍.【解答】解:根据题意可得:,解得m=﹣2,故选B.9.如图,AB是⊙O的切线,B为切点,AC经过点O,与⊙O分别相交于点D、C.若∠CAB=30°,CD=2,则阴影部分面积是()A.B.C.﹣D.﹣【考点】切线的性质;扇形面积的计算.【分析】直接利用切线的性质结合扇形面积求法得出阴影部分面积=S△OBA﹣S扇形OBD,进而得出答案.【解答】解:连接BO,∵AB是⊙O的切线,B为切点,∴∠OBA=90°,∵∠CAB=30°,CD=2,∴OB=1,AO=2,∠BOA=60°,则AB=,∴阴影部分面积=S△OBA﹣S扇形OBD=×1×﹣=﹣.故选:C.10.如图,圆O的弦AB垂直平分半径OC,则四边形OACB一定是()A.正方形B.长方形C.菱形D.梯形【考点】垂径定理;菱形的判定.【分析】先根据垂径定理得出AD=BD,AC=BC,再根据全等三角形的判定定理得出△AOD≌△BCD,故可得出OA=BC,即OA=OB=BC=AC,由此即可得出结论.【解答】解:∵弦AB垂直平分半径OC,∴AD=BD,AC=BC,OD=CD,∵在△AOD与△BCD中,,∴△AOD≌△BCD,∴OA=BC,∴OA=OB=BC=AC,∴四边形OACB是菱形.故选C.11.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①ac<0;②a﹣b+c<0;③当x<0时,y<0;④方程ax2+bx+c=0(a≠0)有两个大于﹣1的实数根.其中正确的是()A.①②③B.①③④C.
本文标题:重庆市江北区2017届九年级上月考数学试卷(12月)含答案解析
链接地址:https://www.777doc.com/doc-7543404 .html