您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 山东省临沂市郯城县2016届九年级上期末数学试卷含答案解析
2015-2016学年山东省临沂市郯城县九年级(上)期末数学试卷一、选择题:本大题共14小题,每小题3分,共42分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填在下表中.1.如图是一个三棱柱的立体图形,它的主视图是()A.B.C.D.2.一个不透明的袋子中装有5个黑球和3个白球,这些球的大小、质地完全相同,随机从袋子中摸出4个球,则下列事件是必然事件的是()A.摸出的四个球中至少有一个球是白球B.摸出的四个球中至少有一个球是黑球C.摸出的四个球中至少有两个球是黑球D.摸出的四个球中至少有两个球是白球3.如图,⊙O是△ABC的外接圆,连接OA、OB,∠OBA=50°,则∠C的度数为()A.30°B.40°C.50°D.80°4.已知反比例函数y=的图象经过点P(﹣1,2),则这个函数的图象位于()A.第二,三象限B.第一,三象限C.第三,四象限D.第二,四象限5.已知△ABC如图,则下列4个三角形中,与△ABC相似的是()A.B.C.D.6.如图,点A(t,3)在第一象限,OA与x轴所夹的锐角为α,tanα=,则t的值是()A.1B.1.5C.2D.37.如图,铁道口的栏杆短臂长1m,长臂长16m.当短臂端点下降0.5m时,长臂端点升高()A.5mB.6mC.7mD.8m8.如图,在Rt△ABC中,∠BAC=90°.如果将该三角形绕点A按顺时针方向旋转到△AB1C1的位置,点B1恰好落在边BC的中点处.那么旋转的角度等于()A.55°B.60°C.65°D.80°9.一个圆锥的侧面展开图形是半径为8cm,圆心角为120°的扇形,则此圆锥的底面半径为()A.cmB.cmC.3cmD.cm10.甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图所示,则符合这一结果的实验可能是()A.掷一枚正六面体的骰子,出现1点的概率B.从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率C.抛一枚硬币,出现正面的概率D.任意写一个整数,它能被2整除的概率11.某方便面厂10月份生产方便面100吨,这样1至10月份生产量恰好完成全年的生产任务,为了满足市场需要,计划到年底再生产231吨方便面,这样就超额全年生产任务的21%,则11、12月的月平均增长率为()A.10%B.31%C.13%D.11%12.如图,在菱形ABCD中,DE⊥AB,cosA=,BE=2,则BD的值()A.2B.C.D.513.已知函数y=的图象如图,以下结论:①m<0;②在每个分支上y随x的增大而增大;③若点A(﹣1,a)、点B(2,b)在图象上,则a<b;④若点P(x,y)在图象上,则点P1(﹣x,﹣y)也在图象上.其中正确的个数是()A.4个B.3个C.2个D.1个14.如图,Rt△OAB的顶点A(﹣2,4)在抛物线y=ax2上,将Rt△OAB绕点O顺时针旋转90°,得到△OCD,边CD与该抛物线交于点P,则点P的坐标为()A.(,)B.(2,2)C.(,2)D.(2,)二、填空题(本题5个小题,每小题3分,共15分;请你将答案填写在题目中的横线上)15.计算:sin30°+cos30°•tan60°=.16.从地面竖直向上抛出一个小球,小球的高度h(米)与运动时间t(秒)之间的关系式为h=30t﹣5t2,那么小球抛出秒后达到最高点.17.边长为1的正六边形的边心距是.18.如图,菱形OABC的顶点O是原点,顶点B在y轴上,菱形的两条对角线的长分别是6和4,反比例函数y=(x<0)的图象经过点C,则k的值为.19.如图,在等边△ABC中,D为BC边上一点,且∠ADE=60°,BD=3,CE=2,则△ABC的边长为.三、解答题(本题共7个小题,共63分;请将解答过程写在答题纸每题规定的区域内)20.已知x=﹣2是关于x的方程2x2+ax﹣a2=0的一个根,求a的值.21.经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,这三种可能性大小相同,现在两辆汽车经过这个十字路口.(1)请用“树形图”或“列表法”列举出这两辆汽车行驶方向所有可能的结果;(2)求这两辆汽车都向左转的概率.22.为践行党的群众路线,六盘水市教育局开展了大量的教育教学实践活动,如图是其中一次“测量旗杆高度”的活动场景抽象出的平面几何图形.活动中测得的数据如下:①小明的身高DC=1.5m②小明的影长CE=1.7cm③小明的脚到旗杆底部的距离BC=9cm④旗杆的影长BF=7.6m⑤从D点看A点的仰角为30°请选择你需要的数据,求出旗杆的高度.(计算结果保留到0.1,参考数据≈1.414.≈1.732)23.在平面直角坐标系中,已知反比例函数y=的图象经过点A,点O是坐标原点,OA=2且OA与x轴的夹角是60°.(1)试确定此反比例函数的解析式;(2)将线段OA绕O点顺时针旋转30°得到线段OB,判断点B是否在此反比例函数的图象上,并说明理由.24.如图是某超市地下停车场入口的设计图,请根据图中数据计算CE的长度.(结果保留小数点后两位;参考数据:sin22°=0.3746,cos22°=0.9272,tan22°=0.4040)25.如图,BD为⊙O的直径,AB=AC,AD交BC于点E,AE=2,ED=4,(1)求证:△ABE∽△ADB;(2)求AB的长;(3)延长DB到F,使得BF=BO,连接FA,试判断直线FA与⊙O的位置关系,并说明理由.26.如图,直线y=﹣x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P.(1)求该抛物线的解析式;(2)连接AC,在x轴上是否存在点Q,使以P、B、Q为顶点的三角形与△ABC相似?若存在,请求出点Q的坐标;若不存在,请说明理由.2015-2016学年山东省临沂市郯城县九年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共14小题,每小题3分,共42分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填在下表中.1.如图是一个三棱柱的立体图形,它的主视图是()A.B.C.D.【考点】简单几何体的三视图.【专题】几何图形问题.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解;从正面看是矩形,看不见的棱用虚线表示,故选:B.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图,注意看不到的棱用虚线表示.2.一个不透明的袋子中装有5个黑球和3个白球,这些球的大小、质地完全相同,随机从袋子中摸出4个球,则下列事件是必然事件的是()A.摸出的四个球中至少有一个球是白球B.摸出的四个球中至少有一个球是黑球C.摸出的四个球中至少有两个球是黑球D.摸出的四个球中至少有两个球是白球【考点】随机事件.【分析】必然事件就是一定发生的事件,依据定义即可作出判断.【解答】解:A、是随机事件,故A选项错误;B、是必然事件,故B选项正确;C、是随机事件,故C选项错误;D、是随机事件,故D选项错误.故选:B.【点评】本题考查了必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.如图,⊙O是△ABC的外接圆,连接OA、OB,∠OBA=50°,则∠C的度数为()A.30°B.40°C.50°D.80°【考点】圆周角定理.【专题】几何图形问题.【分析】根据三角形的内角和定理求得∠AOB的度数,再进一步根据圆周角定理求解.【解答】解:∵OA=OB,∠OBA=50°,∴∠OAB=∠OBA=50°,∴∠AOB=180°﹣50°×2=80°,∴∠C=∠AOB=40°.故选:B.【点评】此题综合运用了三角形的内角和定理以及圆周角定理.一条弧所对的圆周角等于它所对的圆心角的一半.4.已知反比例函数y=的图象经过点P(﹣1,2),则这个函数的图象位于()A.第二,三象限B.第一,三象限C.第三,四象限D.第二,四象限【考点】反比例函数的性质;待定系数法求反比例函数解析式.【专题】待定系数法.【分析】先把点代入函数解析式,求出k值,再根据反比例函数的性质求解即可.【解答】解:由题意得,k=﹣1×2=﹣2<0,∴函数的图象位于第二,四象限.故选:D.【点评】本题考查了反比例函数的图象的性质:k>0时,图象在第一、三象限,k<0时,图象在第二、四象限.5.已知△ABC如图,则下列4个三角形中,与△ABC相似的是()A.B.C.D.【考点】相似三角形的判定.【分析】△ABC是等腰三角形,底角是75°,则顶角是30°,看各个选项是否符合相似的条件.【解答】解:∵由图可知,AB=AC=6,∠B=75°,∴∠C=75°,∠A=30°,A、三角形各角的度数分别为75°,52.5°,52.5°,B、三角形各角的度数都是60°,C、三角形各角的度数分别为75°,30°,75°,D、三角形各角的度数分别为40°,70°,70°,∴只有C选项中三角形各角的度数与题干中三角形各角的度数相等,故选:C.【点评】此题主要考查等腰三角形的性质,三角形内角和定理和相似三角形的判定的理解和掌握,此题难度不大,但综合性较强.6.如图,点A(t,3)在第一象限,OA与x轴所夹的锐角为α,tanα=,则t的值是()A.1B.1.5C.2D.3【考点】锐角三角函数的定义;坐标与图形性质.【专题】数形结合.【分析】根据正切的定义即可求解.【解答】解:∵点A(t,3)在第一象限,∴AB=3,OB=t,又∵tanα==,∴t=2.故选:C.【点评】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.7.如图,铁道口的栏杆短臂长1m,长臂长16m.当短臂端点下降0.5m时,长臂端点升高()A.5mB.6mC.7mD.8m【考点】相似三角形的应用.【分析】栏杆长短臂在升降过程中,将形成两个相似三角形,利用对应变成比例解题.【解答】解:设长臂端点升高x米,则,∴x=8.故选D.【点评】此题是相似三角形在实际生活中的运用,比较简单.8.如图,在Rt△ABC中,∠BAC=90°.如果将该三角形绕点A按顺时针方向旋转到△AB1C1的位置,点B1恰好落在边BC的中点处.那么旋转的角度等于()A.55°B.60°C.65°D.80°【考点】旋转的性质.【分析】利用直角三角形斜边上的中线等于斜边的一半,进而得出△ABB1是等边三角形,即可得出旋转角度.【解答】解:∵在Rt△ABC中,∠BAC=90°,将该三角形绕点A按顺时针方向旋转到△AB1C1的位置,点B1恰好落在边BC的中点处,∴AB1=BC,BB1=B1C,AB=AB1,∴BB1=AB=AB1,∴△ABB1是等边三角形,∴∠BAB1=60°,∴旋转的角度等于60°.故选:B.【点评】此题主要考查了旋转的性质以及等边三角形的判定等知识,得出△ABB1是等边三角形是解题关键.9.一个圆锥的侧面展开图形是半径为8cm,圆心角为120°的扇形,则此圆锥的底面半径为()A.cmB.cmC.3cmD.cm【考点】弧长的计算.【分析】利用弧长公式和圆的周长公式求解.【解答】解:设此圆锥的底面半径为r,根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得:2πr=,r=cm.故选:A.【点评】圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.本题就是把的扇形的弧长等于圆锥底面周长作为相等关系,列方程求解.10.甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图所示,则符合这一结果的实验可能是()A.掷一枚正六面体的骰子,出现1点的概率B.从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率C.抛一枚硬币,出现正面的概率D.任意写一个整数,它能被2整除的概率【考点】利用频率估计概率.【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计
本文标题:山东省临沂市郯城县2016届九年级上期末数学试卷含答案解析
链接地址:https://www.777doc.com/doc-7543575 .html