您好,欢迎访问三七文档
力与物体的平衡第一讲力的处理一、矢量的运算1、加法表达:a+b=c。名词:c为“和矢量”。法则:平行四边形法则。如图1所示。和矢量大小:c=cosab2ba22,其中α为a和b的夹角。和矢量方向:c在a、b之间,和a夹角β=arcsincosab2basinb222、减法表达:a=c-b。名词:c为“被减数矢量”,b为“减数矢量”,a为“差矢量”。法则:三角形法则。如图2所示。将被减数矢量和减数矢量的起始端平移到一点,然后连接两时量末端,指向被减数时量的时量,即是差矢量。差矢量大小:a=cosbc2cb22,其中θ为c和b的夹角。差矢量的方向可以用正弦定理求得。一条直线上的矢量运算是平行四边形和三角形法则的特例。例题:已知质点做匀速率圆周运动,半径为R,周期为T,求它在41T内和在21T内的平均加速度大小。解说:如图3所示,A到B点对应41T的过程,A到C点对应21T的过程。这三点的速度矢量分别设为Av、Bv和Cv。根据加速度的定义a=tvv0t得:ABa=ABABtvv,ACa=ACACtvv由于有两处涉及矢量减法,设两个差矢量1v=Bv-Av,2v=Cv-Av,根据三角形法则,它们在图3中的大小、方向已绘出(2v的“三角形”已被拉伸成一条直线)。本题只关心各矢量的大小,显然:Av=Bv=Cv=TR2,且:1v=2Av=TR22,2v=2Av=TR4所以:ABa=AB1tv=4TTR22=2TR28,ACa=AC2tv=2TTR4=2TR8。(学生活动)观察与思考:这两个加速度是否相等,匀速率圆周运动是不是匀变速运动?答:否;不是。3、乘法矢量的乘法有两种:叉乘和点乘,和代数的乘法有着质的不同。⑴叉乘表达:a×b=c名词:c称“矢量的叉积”,它是一个新的矢量。叉积的大小:c=absinα,其中α为a和b的夹角。意义:c的大小对应由a和b作成的平行四边形的面积。叉积的方向:垂直a和b确定的平面,并由右手螺旋定则确定方向,如图4所示。显然,a×b≠b×a,但有:a×b=-b×a⑵点乘表达:a·b=c名词:c称“矢量的点积”,它不再是一个矢量,而是一个标量。点积的大小:c=abcosα,其中α为a和b的夹角。二、共点力的合成1、平行四边形法则与矢量表达式2、一般平行四边形的合力与分力的求法余弦定理(或分割成RtΔ)解合力的大小正弦定理解方向三、力的分解1、按效果分解2、按需要——正交分解第二讲物体的平衡一、共点力平衡1、特征:质心无加速度。2、条件:ΣF=0,或xF=0,yF=0例题:如图5所示,长为L、粗细不均匀的横杆被两根轻绳水平悬挂,绳子与水平方向的夹角在图上已标示,求横杆的重心位置。解说:直接用三力共点的知识解题,几何关系比较简单。答案:距棒的左端L/4处。(学生活动)思考:放在斜面上的均质长方体,按实际情况分析受力,斜面的支持力会通过长方体的重心吗?解:将各处的支持力归纳成一个N,则长方体受三个力(G、f、N)必共点,由此推知,N不可能通过长方体的重心。正确受力情形如图6所示(通常的受力图是将受力物体看成一个点,这时,N就过重心了)。答:不会。二、转动平衡1、特征:物体无转动加速度。2、条件:ΣM=0,或ΣM+=ΣM-如果物体静止,肯定会同时满足两种平衡,因此用两种思路均可解题。3、非共点力的合成大小和方向:遵从一条直线矢量合成法则。作用点:先假定一个等效作用点,然后让所有的平行力对这个作用点的和力矩为零。第三讲习题课1、如图7所示,在固定的、倾角为α斜面上,有一块可以转动的夹板(β不定),夹板和斜面夹着一个质量为m的光滑均质球体,试求:β取何值时,夹板对球的弹力最小。解说:法一,平行四边形动态处理。对球体进行受力分析,然后对平行四边形中的矢量G和N1进行平移,使它们构成一个三角形,如图8的左图和中图所示。由于G的大小和方向均不变,而N1的方向不可变,当β增大导致N2的方向改变时,N2的变化和N1的方向变化如图8的右图所示。显然,随着β增大,N1单调减小,而N2的大小先减小后增大,当N2垂直N1时,N2取极小值,且N2min=Gsinα。法二,函数法。看图8的中间图,对这个三角形用正弦定理,有:sinN2=sinG,即:N2=sinsinG,β在0到180°之间取值,N2的极值讨论是很容易的。答案:当β=90°时,甲板的弹力最小。2、把一个重为G的物体用一个水平推力F压在竖直的足够高的墙壁上,F随时间t的变化规律如图9所示,则在t=0开始物体所受的摩擦力f的变化图线是图10中的哪一个?解说:静力学旨在解决静态问题和准静态过程的问题,但本题是一个例外。物体在竖直方向的运动先加速后减速,平衡方程不再适用。如何避开牛顿第二定律,是本题授课时的难点。静力学的知识,本题在于区分两种摩擦的不同判据。水平方向合力为零,得:支持力N持续增大。物体在运动时,滑动摩擦力f=μN,必持续增大。但物体在静止后静摩擦力f′≡G,与N没有关系。对运动过程加以分析,物体必有加速和减速两个过程。据物理常识,加速时,f<G,而在减速时f>G。答案:B。3、如图11所示,一个重量为G的小球套在竖直放置的、半径为R的光滑大环上,另一轻质弹簧的劲度系数为k,自由长度为L(L<2R),一端固定在大圆环的顶点A,另一端与小球相连。环静止平衡时位于大环上的B点。试求弹簧与竖直方向的夹角θ。解说:平行四边形的三个矢量总是可以平移到一个三角形中去讨论,解三角形的典型思路有三种:①分割成直角三角形(或本来就是直角三角形);②利用正、余弦定理;③利用力学矢量三角形和某空间位置三角形相似。本题旨在贯彻第三种思路。分析小球受力→矢量平移,如图12所示,其中F表示弹簧弹力,N表示大环的支持力。(学生活动)思考:支持力N可不可以沿图12中的反方向?(正交分解看水平方向平衡——不可以。)容易判断,图中的灰色矢量三角形和空间位置三角形ΔAOB是相似的,所以:RABGF⑴由胡克定律:F=k(AB-R)⑵几何关系:AB=2Rcosθ⑶解以上三式即可。答案:arccos)GkR(2kL。(学生活动)思考:若将弹簧换成劲度系数k′较大的弹簧,其它条件不变,则弹簧弹力怎么变?环的支持力怎么变?答:变小;不变。(学生活动)反馈练习:光滑半球固定在水平面上,球心O的正上方有一定滑轮,一根轻绳跨过滑轮将一小球从图13所示的A位置开始缓慢拉至B位置。试判断:在此过程中,绳子的拉力T和球面支持力N怎样变化?解:和上题完全相同。答:T变小,N不变。4、如图14所示,一个半径为R的非均质圆球,其重心不在球心O点,先将它置于水平地面上,平衡时球面上的A点和地面接触;再将它置于倾角为30°的粗糙斜面上,平衡时球面上的B点与斜面接触,已知A到B的圆心角也为30°。试求球体的重心C到球心O的距离。解说:练习三力共点的应用。根据在平面上的平衡,可知重心C在OA连线上。根据在斜面上的平衡,支持力、重力和静摩擦力共点,可以画出重心的具体位置。几何计算比较简单。答案:33R。(学生活动)反馈练习:静摩擦足够,将长为a、厚为b的砖块码在倾角为θ的斜面上,最多能码多少块?解:三力共点知识应用。答:ctgba。4、两根等长的细线,一端拴在同一悬点O上,另一端各系一个小球,两球的质量分别为m1和m2,已知两球间存在大小相等、方向相反的斥力而使两线张开一定角度,分别为45和30°,如图15所示。则m1:m2-为多少?解说:本题考查正弦定理、或力矩平衡解静力学问题。对两球进行受力分析,并进行矢量平移,如图16所示。首先注意,图16中的灰色三角形是等腰三角形,两底角相等,设为α。而且,两球相互作用的斥力方向相反,大小相等,可用同一字母表示,设为F。对左边的矢量三角形用正弦定理,有:singm1=45sinF①同理,对右边的矢量三角形,有:singm2=30sinF②解①②两式即可。答案:1:2。(学生活动)思考:解本题是否还有其它的方法?答:有——将模型看成用轻杆连成的两小球,而将O点看成转轴,两球的重力对O的力矩必然是平衡的。这种方法更直接、简便。应用:若原题中绳长不等,而是l1:l2=3:2,其它条件不变,m1与m2的比值又将是多少?解:此时用共点力平衡更加复杂(多一个正弦定理方程),而用力矩平衡则几乎和“思考”完全相同。答:2:32。5、如图17所示,一个半径为R的均质金属球上固定着一根长为L的轻质细杆,细杆的左端用铰链与墙壁相连,球下边垫上一块木板后,细杆恰好水平,而木板下面是光滑的水平面。由于金属球和木板之间有摩擦(已知摩擦因素为μ),所以要将木板从球下面向右抽出时,至少需要大小为F的水平拉力。试问:现要将木板继续向左插进一些,至少需要多大的水平推力?解说:这是一个典型的力矩平衡的例题。以球和杆为对象,研究其对转轴O的转动平衡,设木板拉出时给球体的摩擦力为f,支持力为N,重力为G,力矩平衡方程为:fR+N(R+L)=G(R+L)①球和板已相对滑动,故:f=μN②解①②可得:f=RLR)LR(G再看木板的平衡,F=f。同理,木板插进去时,球体和木板之间的摩擦f′=RLR)LR(G=F′。答案:FRLRRLR。第四讲摩擦角及其它一、摩擦角1、全反力:接触面给物体的摩擦力与支持力的合力称全反力,一般用R表示,亦称接触反力。2、摩擦角:全反力与支持力的最大夹角称摩擦角,一般用φm表示。此时,要么物体已经滑动,必有:φm=arctgμ(μ为动摩擦因素),称动摩擦力角;要么物体达到最大运动趋势,必有:φms=arctgμs(μs为静摩擦因素),称静摩擦角。通常处理为φm=φms。3、引入全反力和摩擦角的意义:使分析处理物体受力时更方便、更简捷。二、隔离法与整体法1、隔离法:当物体对象有两个或两个以上时,有必要各个击破,逐个讲每个个体隔离开来分析处理,称隔离法。在处理各隔离方程之间的联系时,应注意相互作用力的大小和方向关系。2、整体法:当各个体均处于平衡状态时,我们可以不顾个体的差异而讲多个对象看成一个整体进行分析处理,称整体法。应用整体法时应注意“系统”、“内力”和“外力”的涵义。三、应用1、物体放在水平面上,用与水平方向成30°的力拉物体时,物体匀速前进。若此力大小不变,改为沿水平方向拉物体,物体仍能匀速前进,求物体与水平面之间的动摩擦因素μ。解说:这是一个能显示摩擦角解题优越性的题目。可以通过不同解法的比较让学生留下深刻印象。法一,正交分解。(学生分析受力→列方程→得结果。)法二,用摩擦角解题。引进全反力R,对物体两个平衡状态进行受力分析,再进行矢量平移,得到图18中的左图和中间图(注意:重力G是不变的,而全反力R的方向不变、F的大小不变),φm指摩擦角。再将两图重叠成图18的右图。由于灰色的三角形是一个顶角为30°的等腰三角形,其顶角的角平分线必垂直底边……故有:φm=15°。最后,μ=tgφm。答案:0.268。(学生活动)思考:如果F的大小是可以选择的,那么能维持物体匀速前进的最小F值是多少?解:见图18,右图中虚线的长度即Fmin,所以,Fmin=Gsinφm。答:Gsin15°(其中G为物体的重量)。2、如图19所示,质量m=5kg的物体置于一粗糙斜面上,并用一平行斜面的、大小F=30N的推力推物体,使物体能够沿斜面向上匀速运动,而斜面体始终静止。已知斜面的质量M=10kg,倾角为30°,重力加速度g=10m/s2,求地面对斜面体的摩擦力大小。解说:本题旨在显示整体法的解题的优越性。法一,隔离法。简要介绍……法二,整体法。注意,滑块和斜面随有相对运动,但从平衡的角度看,它们是完全等价的,可以看成一个整体。做整体的受力分析时,内力不加考虑。受力分析比较简单,列水平方向平衡方程很容易解地面摩擦力。答案:26.0N。(学生活动)地面给斜面体的支持力是多少?解:略。答:135N。应用:
本文标题:力与物体的平衡
链接地址:https://www.777doc.com/doc-7546145 .html