您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 质量控制/管理 > 2012年全国小学生数学竞赛训练试卷
2012年全国小学生数学竞赛训练试卷(二)一、填空题1.甲、乙两人同时同地同向沿一条公路行走,甲每小时行6千米,而乙第1小时行1千米,第2小时行2千米,第3小时行3千米…,每行1小时都比前1小时多行1千米.经过_____小时后乙追上甲.2.1~1991这1991个自然数中,所有的奇数之和与所有的偶数之和的差是_____3.有一串数:5,55,555…{555…5(15个5)}这一串数的和的末三位数是______4.15个连续的自然数中,最大数是最小数的3倍.这15个自然数的和是______5.1992是24个连续偶数的和,其中最大的偶数是_____6.一项工程,甲独做24小时完成,乙独做36小时完成.现在要求20小时完成,并且两个合做的时间尽可能少.那么,甲、乙合做_______小时.7.甲地有89吨货物要运到乙地,大卡车的载重量是7吨,小卡车的载重量是4吨.大卡车运一趟耗油14升,小卡车运一趟耗油9升.运完这些货物最少耗油_____升.8.下面的算式是按规律排列的:1+1,2+3,3+5,4+7,1+9,2+11,3+13,4+15,1+17…第______算式中的得数是1992.9.有若干堆围棋子,每堆棋子数一样多,且每堆中白子都占28%.小明从某一堆中拿走一半棋子,而且拿走的都是黑子,现在,在所有的棋子中,白子将占32%.那么,共有棋子多少堆?10.真分数a7化为小数后,如果从小数点后第一位的数字开始连续若干个数字之和是1992.那么a=11.有一个整数用它除53、89、127得出的三个余数的和是23,这个整数是12.某校有100名学生参加数学竞赛,平均分是63分,其中男生平均分是60分,女生平均分是70分,男同学比女同学多人.13.6枚1分硬币迭在一起与5枚2分硬币一样高,6枚2分硬币迭在一起与5枚5分硬币一样高,如果分别用1分、2分、5分硬币迭成的三个圆柱体一样高,这些硬币的币值为4元4角2分,那么这三种硬币总共有枚.14.在1,2,3,…29,30这30个自然数中,最多能取出个数,使取出的这些数中,任意两个不同的数的和都不是7的倍数.15.有个四位数,它的百位数字和个位数字相同.16.六份同样的礼物,全部分给四个孩子,使每个孩子至少获得一份礼物的不同分法共有种.17.从1到50这50个自然数中,取两个数相加,要使它们的和大于50,共有种不同的取法.二、应用题18.找出四个互不相同的自然数,使得对于其中任何两个数,它们的和总可以被它们的差整除,如果要求这四个数中最大的数与最小的数的和尽可能的小,那么这四个数里中间两个数的和是多少?19.将99个球装进两种大小不同的盒子里.大盒每盒装12个,小盒每盒装5个,刚好装完.如果两种盒子的总数大于10,这两种盒子各有多少个?20.如图,由九个面积不同的长方形组成一个大正方形.大正方形的面积是25平方厘米,求阴影部分的面积是多少?21.在2,3,4,5,6这五个数字中,取出三个数字组成三位数,这样的三位数可以有很多个,如果把这些三位数从大到小排列起来,请你想一起,这串数中第51个数除以6余数是多少?22.某人在一年中接受工厂分配的任务若干次,按规定如果及时完成任务就奖给他25元,如果没能按时完成任务,就被罚款50元,最后完成任务的次数是没有完成任务的7倍,该工人年终共得款3750元.求他在这一年中没完成任务的次数.23.有11个人围成一个圆圈,并依次编成1~11号,从1号起依次发《趣味数学》书,发书的方法是:隔1人发1本,隔2人发1本;再隔1人发1本,隔2人发1本;再隔1人发1本,隔2人发1本….这样发下去,试问最少要准备多少本书才能使发给每人的本数同样多?119962752101066181995464140182159001062518.找出四个互不相同的自然数,使得对于其中任何两个数,它们的和总可以被它们的差整除,如果要求这四个数中最大的数与最小的数的和尽可能的小,那么这四个数里中间两个数的和是多少?分析:如果最小的数是1,则和1一起能符合“和被差整除”这一要求的数只有2和3两数,因此最小的数必须大于或等于2;我们先考察2、3、4、5这四个数,仍不符合要求,因为5+2=7,不能被5-2=3整除;再往下就是2、3、4、6,经试算,这四个数符合要求.所以,本题的答案是(3+4)=7.解答:解:这四个自然数为2、3、4、6,因为4-3=1;7÷1=7,得出:3+4=7;答:这四个数里中间两个数的和是7.19.解:设大盒用了x个,小盒用了y个,根据题意可得方程:12x+5y=99,所以y=99-12x5,当x=2时,y=15;当x=7时,y=3;又因为两种盒子的总数大于10,所以只有x=2,y=15符合题意,答:大盒有2个,小盒有15个.20.由“大正方形的面积是25平方厘米”可得大正方形的边长为5厘米,再据图意可得:阴影部分的长为2厘米,宽为1厘米(将两个阴影部分和在一起),利用长方形的面积公式即可求解.解答:解:因为5×5=25平方厘米,所以答正方形的边长为5厘米,则阴影部分的长为2厘米,宽为1厘米,所以,阴影部分的面积为:2×1=2(平方厘米);答:阴影部分的面积是2平方厘米.21.解:根据乘法原理可知,组成有三位数有:成5×4×3=60个;当百位上分别取6、5、4、3时,组成的三位数共有4×3×4=48(个),则按从大到小的顺序排列第51个数为百位为2的第三个数即:263;263÷6=43…5,所以这串数中由大到小排列第51个数除以6的余数是5.答:这串数中由大到小排列第51个数除以6的余数是5.22.分析:假如这个工人有一次没完成任务,那么他被罚款50元.因为他完成任务的次数是没完成任务的7倍,所以他完成任务次数就是7次,那么他应得奖金是25×7=175(元),从175元中减去被罚的50元,就是他再一次没完成任务(完成任务的次数是没完成任务的7倍)的情况下,得到的奖金数(125元).因此,该工人年终共得款3750元中,有几个125元,就有几次没完成任务.解答:解:3750÷(25×7-50),=3750÷(175-50),=3750÷125,=30(次);答:他在这一年中有30次没完成任务23.分析:第一个周期:从1号起,3号和6号各得一本,共发书2本;第二个周期:从6号起,8号和11号各得一本,共发书2本;依此类推,每个周期共发书2本;设发给每人的本数同样多都是N本,经过了M个周期,则得关系式:M=11N÷2;根据M必须是整数,即N=2、4、6、8、10、…进而得出N最小为2;问题的解.解答:解:发给每人的本数同样多都是N本,一共需要11N本书;经过了M个周期,所以可得,M=11N2,因为M必须是整数,则N=2、4、6、8、10、…(偶数);所以要使准备的本书最少,N的值只能是2,则总本数最少是:11×2=22(本);答:最少要准备22本书才能使发给每人的本数同样多.
本文标题:2012年全国小学生数学竞赛训练试卷
链接地址:https://www.777doc.com/doc-7549984 .html