您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 2013年中考数学试题汇编------圆
1.如图是李大妈跳舞用的扇子,这个扇形AOB的圆心角∠O=120°,半径OA=3,则弧AB的长度为2π(结果保留π).考点:弧长的计算分析:根据弧长公式是l=,代入就可以求出弧长.解答:解:∵这个扇形AOB的圆心角∠O=120°,半径OA=3,∴弧AB的长度为:=2π.故答案为:2π.2.(2013凉山州)如图,Rt△ABC中,∠C=90°,AC=8,BC=6,两等圆⊙A,⊙B外切,那么图中两个扇形(即阴影部分)的面积之和为.考点:扇形面积的计算;勾股定理;相切两圆的性质.专题:计算题.分析:根据题意,可得阴影部分的面积等于圆心角为90°的扇形的面积.解答:解:∵∠C=90°,AC=8,BC=6,∴AB=10,∴扇形的半径为5,∴阴影部分的面积==π.点评:解决本题的关键是把两个阴影部分的面积整理为一个规则扇形的面积.3.(2013•天津)如图,PA、PB分别切⊙O于点A、B,若∠P=70°,则∠C的大小为55(度).考点:切线的性质.3718684分析:首先连接OA,OB,由PA、PB分别切⊙O于点A、B,根据切线的性质可得:OA⊥PA,OB⊥PB,然后由四边形的内角和等于360°,求得∠AOB的度数,又由圆周角定理,即可求得答案.解答:解:连接OA,OB,∵PA、PB分别切⊙O于点A、B,∴OA⊥PA,OB⊥PB,即∠PAO=∠PBO=90°,∴∠AOB=360°﹣∠PAO﹣∠P﹣∠PBO=360°﹣90°﹣70°﹣90°=110°,∴∠C=∠AOB=55°.故答案为:55.点评:此题考查了切线的性质以及圆周角定理.此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.4.如图,▱ABCD的顶点A、B、D在⊙O上,顶点C在⊙O的直径BE上,∠ADC=54°,连接AE,则∠AEB的度数为()A.36°B.46°C.27°D.63°考点:圆周角定理;平行四边形的性质.3481324分析:根据BE是直径可得∠BAE=90°,然后在▱ABCD中∠ADC=54°,可得∠B=54°,继而可求得∠AEB的度数.解答:解:∵四边形ABCD是平行四边形,∠ADC=54°,∴∠B=∠ADC=54°,∵BE为⊙O的直径,∴∠BAE=90°,∴∠AEB=90°﹣∠B=90°﹣54°=36°.故选A.点评:本题考查了圆周角定理及平行四边形的性质,解答本题的关键是根据平行四边形的性质得出∠B=∠ADC.5.(2013•宁波)如图,AE是半圆O的直径,弦AB=BC=4,弦CD=DE=4,连结OB,OD,则图中两个阴影部分的面积和为10π.考点:扇形面积的计算;勾股定理;垂径定理;圆心角、弧、弦的关系.3338333专题:综合题.分析:根据弦AB=BC,弦CD=DE,可得∠BOD=90°,∠BOD=90°,过点O作OF⊥BC于点F,OG⊥CD于点G,在四边形OFCG中可得∠FCD=135°,过点C作CN∥OF,交OG于点N,判断△CNG、△OMN为等腰直角三角形,分别求出NG、ON,继而得出OG,在Rt△OGD中求出OD,即得圆O的半径,代入扇形面积公式求解即可.解答:解:∵弦AB=BC,弦CD=DE,∴点B是弧AC的中点,点D是弧CE的中点,∴∠BOD=90°,过点O作OF⊥BC于点F,OG⊥CD于点G,则BF=FG=2,CG=GD=2,∠FOG=45°,在四边形OFCG中,∠FCD=135°,过点C作CN∥OF,交OG于点N,则∠FCN=90°,∠NCG=135°﹣90°=45°,∴△CNG为等腰三角形,∴CG=NG=2,过点N作NM⊥OF于点M,则MN=FC=2,在等腰三角形MNO中,NO=MN=4,∴OG=ON+NG=6,在Rt△OGD中,OD===2,即圆O的半径为2,故S阴影=S扇形OBD==10π.故答案为:10π.点评:本题考查了扇形的面积计算、勾股定理、垂径定理及圆心角、弧之间的关系,综合考察的知识点较多,解答本题的关键是求出圆0的半径,此题难度较大.6.(2013山东滨州,4,3分)如图,在⊙O中圆心角∠BOC=78°,则圆周角∠BAC的大小为A.156°B.78°C.39°D.12°【答案】C.7.如图5,圆心在y轴的负半轴上,半径为5的⊙B与y轴的正半轴交于点A(0,1),过点P(0,-7)的直线l与⊙B相交于C、D两点,则弦CD长的所有可能的整数值有()个。A.1B.2C.3D.4(CD=8,9,10)8.如图,在△ABC中,AB=2,AC=,以A为圆心,1为半径的圆与边BC相切,则∠BAC的度数是105度.考点:[来源:学科网]切线的性质分析:首先通过作辅助线构建直角三角形,然后解直角三角形即可.解答:解:设圆与BC切于点D,连接AD,则AD⊥BC;在直角△ABD中AB=2,AD=1,考点:[来源:学科网]切线的性质分析:首先通过作辅助线构建直角三角形,然后解直角三角形即可.解答:解:设圆与BC切于点D,连接AD,则AD⊥BC;在直角△ABD中AB=2,AD=1,∴∠B=30°,因而∠BAD=60°,同理,在直角△ACD中,得到∠CAD=45°,因而∠BAC的度数是105°.点评:运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.∴∠B=30°,因而∠BAD=60°,同理,在直角△ACD中,得到∠CAD=45°,因而∠BAC的度数是105°.点评:运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.9.(2013菏泽)如图,BC是⊙O的直径,A是⊙O上一点,过点C作⊙O的切线,交BA的延长线于点D,取CD的中点E,AE的延长线与BC的延长线交于点P.(1)求证:AP是⊙O的切线;(2)OC=CP,AB=6,求CD的长.考点:切线的判定与性质;解直角三角形.分析:(1)连接AO,AC(如图).欲证AP是⊙O的切线,只需证明OA⊥AP即可;(2)利用(1)中切线的性质在Rt△OAP中利用边角关系求得∠ACO=60°.然后在Rt△BAC、Rt△ACD中利用余弦三角函数的定义知AC=2,CD=4.解答:(1)证明:连接AO,AC(如图).∵BC是⊙O的直径,∴∠BAC=∠CAD=90°.∵E是CD的中点,∴CE=DE=AE.∴∠ECA=∠EAC.∵OA=OC,∴∠OAC=∠OCA.∵CD是⊙O的切线,∴CD⊥OC.∴∠ECA+∠OCA=90°.∴∠EAC+∠OAC=90°.∴OA⊥AP.∵A是⊙O上一点,∴AP是⊙O的切线;(2)解:由(1)知OA⊥AP.在Rt△OAP中,∵∠OAP=90°,OC=CP=OA,即OP=2OA,∴sinP==,∴∠P=30°.∴∠AOP=60°.∵OC=OA,∴∠ACO=60°.在Rt△BAC中,∵∠BAC=90°,AB=6,∠ACO=60°,∴AC==2,又∵在Rt△ACD中,∠CAD=90°,∠ACD=90°﹣∠ACO=30°,∴CD===4.点评:本题考查了切线的判定与性质、解直角三角形.注意,切线的定义的运用,解题的关键是熟记特殊角的锐角三角函数值.10.如图,在矩形ABCD中,AB=2DA,以点A为圆心,AB为半径的圆弧交DC于点E,交AD的延长线于点F,设DA=2.(1)求线段EC的长;(2)求图中阴影部分的面积.考点:扇形面积的计算;含30度角的直角三角形;勾股定理;矩形的性质分析:(1)根据扇形的性质得出AB=AE=4,进而利用勾股定理得出DE的长,即可得出答案;(2)利用锐角三角函数关系得出∠DEA=30°,进而求出图中阴影部分的面积为:S扇形FAB﹣S△DAE﹣S扇形EAB求出即可.解答:解;(1)∵在矩形ABCD中,AB=2DA,DA=2,∴AB=AE=4,∴DE==2,∴EC=CD﹣DE=4﹣2;(2)∵sin∠DEA==,∴∠DEA=30°,∴∠EAB=30°,∴图中阴影部分的面积为:S扇形FAB﹣S△DAE﹣S扇形EAB=﹣×2×2﹣=﹣2.点评:此题主要考查了扇形的面积计算以及勾股定理和锐角三角函数关系等知识,根据已知得出DE的长是解题关键.11.如图12,AB是⊙O的直径,经过圆上点D的直线CD恰使∠ADC=∠B.(1)求证:直线CD是⊙O的切线;(2)过点A作直线AB的垂线交BD的延长线于点E,且AB=5,BD=2,求线段AE的长.解:(1)证明:连结OD,OD=OB,∠ODB=∠B,∠ADC=∠B,∠ODB=∠ADC;∵AB是⊙O的直径,∴∠ADB=∠ADO+∠ODB=90º,∠ADO+∠ADC=90º,∠ODC=90º,OD⊥CD,∴直线CD是⊙O的切线。(2)AB=5,BD=2,DA=AB2-BD2=1,∵AE⊥AB,∠EAB=∠ADB=90º,∠B=∠B,△EAB∽△ADB,AEDA=ABDB,AE=AB·DADB=52.答:线段AE的长为52。12.如图,在平面直角坐标系中,以点O为圆心,半径为2的圆与y轴交于点A,点P(4,2)是⊙O外一点,连接AP,直线PB与⊙O相切于点B,交x轴于点C.(1)证明PA是⊙O的切线;(2)求点B的坐标;(3)求直线AB的解析式.【答案】(1)证明:依题意可知,A(0,2)∵A(0,2),P(4,2),∴AP∥x轴.∴∠OAP=90°,且点A在⊙O上,∴PA是⊙O的切线;(2)解法一:连接OP,OB,作PE⊥x轴于点E,BD⊥x轴于点D,∵PB切⊙O于点B,∴∠OBP=90°,即∠OBP=∠PEC,又∵OB=PE=2,∠OCB=∠PEC.∴△OBC≌△PEC.∴OC=PC.(或证Rt△OAP≌△OBP,再得到OC=PC也可)设OC=PC=x,则有OE=AP=4,CE=OE-OC=4-x,在Rt△PCE中,∵PC2=CE2+PE2,∴x2=(4-x)2+22,解得x=25,……………………4分∴BC=CE=4-25=23,∵21OB·BC=21OC·BD,即21×2×23=21×25×BD,∴BD=56.∴OD=22BDOB=25364=58,由点B在第四象限可知B(58,56);解法二:连接OP,OB,作PE⊥x轴于点E,BD⊥y轴于点D,∵PB切⊙O于点B∴∠OBP=90°即∠OBP=∠PEC.又∵OB=PE=2,∠OCB=∠PEC,∴△OBC≌△PEC.∴OC=PC(或证Rt△OAP≌△OBP,再得到OC=PC也可)设OC=PC=x,则有OE=AP=4,CE=OE-OC=4-x,在Rt△PCE中,∵PC2=CE2+PE2,∴x2=(4-x)2+22,解得x=25,………………………………4分∴BC=CE=4-25=23,∵BD∥x轴,∴∠COB=∠OBD,又∵∠OBC=∠BDO=90°,∴△OBC∽△BDO,∴BDOB=ODCB=BOOC,即BD2=BD23=225.∴BD=58,OD=56.由点B在第四象限可知B(58,56);(3)设直线AB的解析式为y=kx+b,由A(0,2),B(58,56),可得5658,2bkb;解得,2,2kb∴直线AB的解析式为y=-2x+2.【考点解剖】本题考查了切线的判定、全等、相似、勾股定理、等面积法求边长、点的坐标、待定系数法求函数解析式等.【解题思路】(1)点A在圆上,要证PA是圆的切线,只要证PA⊥OA(∠OAP=90°)即可,由A、P两点纵坐标相等可得AP∥x轴,所以有∠OAP+∠AOC=180°得∠OAP=90°;(2)要求点B的坐标,根据坐标的意义,就是要求出点B到x轴、y轴的距离,自然想到构造Rt△OBD,由PB又是⊙O的切线,得Rt△OAP≌△OBP,从而得△OPC为等腰三角形,在Rt△PCE中,PE=OA=2,PC+CE=OE=4,列出关于CE的方程可求出CE、OC的长,△OBC的三边的长知道了,就可求出高BD,再求OD即可求得点B的坐标;(3)已知点A、点B的坐标用待定系数法可求出直线AB的解析式.【解答过程】略.【方法规律】从整体把握图形,找全等、相似、等腰三角形;求线段的长要从局部入手,若是直角三角
本文标题:2013年中考数学试题汇编------圆
链接地址:https://www.777doc.com/doc-7550688 .html