您好,欢迎访问三七文档
当前位置:首页 > 幼儿/小学教育 > 小学教育 > 2014_数学竞赛_代数不等式综合(局部调整法)
6-1局部调整法张小明编一、任意两个自变量之间的调整在中学数学竞赛中,局部调整法(又称磨光法)是证明不等式常用的手段与技巧,它主要指以下定理.定理设D是12nxxxm上的对称凸域,在D上的连续对称函数12,,,nfxxx满足:对任意的12,,,nxxx都有12121233,,,,,,,,22nnxxxxfxxxxfxx,则必有12,,,,,,nmmmfxxxfnnn.比如著名的公式:,abR,22222abab,可以理解成22222222ababab.例1已知2,,1,2,,0innNxin,求证:1212nnnxxxxxxn.证明121231212121232222nnnnnnxxxxxxxxxxxxxxxxxxnn2123122nnnnxxxxxxx212122xxxx成立,所以无限次调整下去,左边减去右边会越来越小,直至所有的1,2,,ixin都相等,此时左边减右边为0,所以原命题成立.例2设,,,abcd为正数,1abcd,求证41111174abcdabcd.证明首先我们证明21122abababab(3.1)2214204abababbaabab222440abababab.由于0,1ab,上式为真,所以(3.1)式为真,由局部调整法知44111141744abcdabcdabcdabcd.例3设,,abc为正数,求证3331111abcabcabcabc.证明因2111abababab2abba成立,所以我们有6-2211111abcabcabccab.下面继续调整ab和c反复调整其中的两个变量,直至无穷,有极限知识知,33311118abcabcabcabc.例4,,0abc,求证:222363()()2722abcabcabcabcabc.证明由于欲证不等式为齐次不等式,所以不妨设1abc.设2222763(,,)()()()22fabcabcabcabc.我们有(,,),,fabcfabcbc22222727()()()(2)(2)(2)22abcabcabcabcabcabc22222227()()()42abcabcbcbcbcbcbc222227()()2bcbcbcbcabca22271042bcbcabca22102742bcaaa2210101027223332bcaaaaaa226101010276223332bcaaaaaa2640002760272bc.下面继续调整bc和a反复调整其中的两个变量,直至无穷,有极限知识知333(,,),,(1,1,1)8fabcfabcabcabcf.注1:证明后半部分,也可直接证,,0fabcbc.若令21,bctat,只要证22421127163222022tttttt2765432(1)(81630912642)0tttttttt.此时易由363663663573574168888388824,336,44ttttttttttttttt77327773227773224474612331723317185.ttttttttttttttttt知结论成立.注2:采取后者证明时,还可以不妨设1t.此时7654326543281630912642(1)(824615337)9tttttttttttttt5432(1)(1)(8322611811)1890ttttttt为明显.为此,我们介绍下一节内容.6-3例5在三角形ΔABC中,求证:93sinsincos28ABC.证明设(,,)sinsincos2AfABCBC,则1(,,)cos[cos()cos()]2sincoscos(sinsin)222222ABCBCfABCBCBCA1cos[cos()cos()]2sin(coscos)sincos222244ABCBCBCBCBCBCA11coscos()coscos()2sincossincos22222442sinsincoscos442AABCBCBCBCBCABCBCBCA和(,,)(,,)22BCBCfABCfA1coscos()12sincossincos1222442sinsincoscos1442ABCBCBCBCABCBCBCA0.所以不断地对(,,)fABC中三个变量进行局部调整法,函数值越来越小,直至00093(,,)(60,60,60)8fABCf.二、两个特定变量之间的调整1、在最大值与最小值之间进行的局部调整法例6设12,,,0naaa,121naaa,求证:12121111nnnnaaaaaa.证明由于对称性,不妨设12naaa,且设121212111(,,,)1nnnnfaaanaaaaaa.则1212111121121(,,,)(,,,,)1122nnnnnnnnnfaaafaaaaaannaaaaaaaaaaa21121211112121()(2)()(2)nnnnnnnnnaaaaaaaaanaaaaaaaaaaa211111112121((1))(2(2))()(2)nnnnnnnnaanaaaananaaaaaaaaaaa6-421111112121(2(2))0()(2)nnnnnnnnaaaaananaaaaaaaaaaa.此类调整都在自变量的最大值和最小值之间进行,直到它们都调整到它们的几何平均1.所以12(,,,)(1,1,,1)0nfaaaf.结论得证.2、自变量最小(大)值不参与的局部调整法例7设,,0abc,求证:332abcabcabbcac.证明设abc,和3(,,)32fabcabcabcabbcac,则(,,)(,,)222fabcfabcbcbcbcabcbc2244442bcbca244420bcaa.下再证(,,)0fabcbc,若设tbca,只要证32340aatat(令6/1,1tass)431340ss22(1)(321)0sss.例8设12,,,0naaa,121naaa,求证:121211122nnnnaaaaaa.证明由于对称性,不妨设12naaa,且设1212121112(,,,)2nnnnfaaanaaaaaa.则121122111112111122(,,,)(,,,,)112222nnnnnnnnnnnfaaafaaaaaaannaaaaaaaaaaaa2111211221111121122()(2)2()(2)nnnnnnnnnnnaaaaaaaaaanaaaaaaaaaaaa2111111111111121122((2)2)(2(3))2()(2)nnnnnnnnnnaanaaaanaanaaaaaaaaaaaa2111111121122(2)0()(2)nnnnnnnnaaaaaaaaaaaaaa除了自变量的最大值外,此类调整在其余1n个量进行,直到它们的几何平均1/t,此时自变量的最大值为1(1)ntt.下面只要证1111,,,,0nftttt即可.1112(1)201nnnntnnttt.221221()(1)(2)2210Defnnnngtntntntnntn.(*)6-5此时2122()2(1)(2)(21)22(1)nnngttnntnntnntnnn,122()2(1)(1)(2)(21)2nnngtnnntnntnt1212(1)2(1)2(1)2(2)(21)nnnnnnntntntnnnt11(1)212(1)2(2)(21)nnnnnnnnntnnnt11122(1)2(2)(21)0nnnnntnnnnn.所以2()ngtt为单调增加函数,22()(1)01nngtgt,()gt为单调增加函数,()(1)0gtg,此即为(*)式.例9设,,,0,4xyztxyzt,求证:(13)(13)(13)(13)130126xyztxyzt.证明不妨设xzyt,和(,,,)130126(13)(13)(13)(13)fxyztxyztxyzt.此时2,1ztzt和2(,,,),,,126126222(13)(13)(13)(13)(13)(13)(13)(13)22xyxyxyfxyztfztxyztztxyxyxyztzt29(13)(13)1264xyztzt2927()454xyztzt22927()459544544xyxyztztztzt29544504xyztzt.反复调整4个自变量中的最大值、第二大的值和第三大的值,直至它们的几何平均,此时43txyz.下证444,,,0333tttft.即334413012613(13)033tttt234154423650tttt22(1)(15265)0ttt.上式对于01t显然为真.例10(2005年高中数学联赛试题)在ABC中,求证:222coscoscos11cos1cos1cos2ABCABC.6-6证
本文标题:2014_数学竞赛_代数不等式综合(局部调整法)
链接地址:https://www.777doc.com/doc-7550729 .html