您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 高中数学竞赛讲义---不等式习题_SOS方法
不等式SOS方法1.设a、b、c为正实数,则222aabcbc证:左-右222aabcbc222222()()abacabacbcbc22()()()()ababcacabcbc222211()(()()()()ababbcbccaca222222()()0()()()()ababaabbcbccaca2.设a、b、c>0,求证:3221223aaaabb①证:①322()02233aaabaabb2222()022baabaabb②当,,(0,2)abcbca时,②已成立。下设,,(0,2)abcbca,设max,,aabcⅠ。abcⅰ)2ab时,∵322222aaaabb,32223bbaabc(2)()0bbcbc也成立,∴32222233aababcaabbⅱ)2bc,类似可得32222323aababcaabb.当acb,则此时必有2ab.先证:32222aaabc39bc322227530cbcbcb增量易得再证:32229223accacccaa3226191420aacac.易得则:3322222239223aabccabcaabbccaa3.设,,abcR,求证:2222113aabcabab。证:原不等式222222111(1)3aabcababab2222222222()1()()112()()()23ababcbcabcabacabab22222222223()1()()()()()()ababcbcbcabcabacab222222223()1()()()ababcabcabacab42222222223()()(3)()abcabcababcabcbc42242222222223()()()33()abcaabcbcbcabcbcababcbc……①Ⅰ,,amaxabc,①244242222222222332()()3()0222aabcabcaabaacbcbcabbcbcbcbcⅡmin,,aabc,①中左233()3()bcababcbcabcⅢ(a-b)(a-c)<0不妨设bac①中2243934acaac,23333bcababcab.∴原不等式成立4.设a、b、cR,证明:33321()aabcabc①证:33222()()(2)abcabcabcbcabac()abcA.①32aabcaA32()0aabcaA②33322222122aabcaaabcaabacabcabacAA()()ababacacAA∴②()()0ababacacA11()()0ababAB23()0cababAB.显然成立.5.求证:33331()bcabcabc①证:33222()()(2)()abcabcabcabacbcabcA,B、C类似定义,33331[222()]0bcabcabcabcbcAAA②而33222()bcabcbcA33222222()()()(2)bcabcbcbcbcabcabac3322222()()2()()(2)bcbcbcabcabcbcbcabac2()()(2)()bcbcabacbcbca∴②2()()1(2)0bcbcbcaabacbcAAA③注意到2abacbc2aA∴(2)bcaabacbcA2()(1)abcaA222aabcaaaAA22[]aaAaababaBAA22()3()()abcacabbcabaABAB2222()()3(22)abccabaacacbabABAB22()(222)cabacacbabAB2222222()()()()()()cabcabcabcacbaabbABABAB∴③22222()()()()()0bcBCbcCcbaBbcaAabbccABC则只须证:2222()()()()BCbcCcbaBbcaAabbcc0223223322332()44)2()()()0bcbcaCbcbcbcabcbcabcbc224222223333()()()3()()()()02222abcbcbcabcbcbcabcabcbcaa2332332243()()()()()2222bcbcbcbcbcbcaa2222433()()()()()bcbcbcbcabca2233()()()bcbcbc.显然成立.故原不等式成立.
本文标题:高中数学竞赛讲义---不等式习题_SOS方法
链接地址:https://www.777doc.com/doc-7556468 .html