您好,欢迎访问三七文档
当前位置:首页 > 机械/制造/汽车 > 2016-2017学年重庆市六校联考高一上期末数学试卷(含答案解析)
2016-2017学年重庆市六校联考高一(上)期末数学试卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.(5分)=()A.B.C.D.2.(5分)已知集合M={1,2},N={2,3,4},若P=M∪N,则P的子集个数为()A.14B.15C.16D.323.(5分)已知函数f(x)=,若f(﹣1)=f(1),则实数a的值为()A.1B.2C.0D.﹣14.(5分)若函数f(x)=ax2﹣bx+1(a≠0)是定义在R上的偶函数,则函数g(x)=ax3+bx2+x(x∈R)是()A.奇函数B.偶函数C.非奇非偶函数D.既是奇函数又是偶函数5.(5分)设a=log2,b=()3,c=3,则()A.c<b<aB.a<b<cC.c<a<bD.b<a<c6.(5分)已知tan(α﹣β)=,tan(﹣β)=,则tan(α﹣)等于()A.B.C.D.7.(5分)方程x﹣logx=3和x﹣logx=3的根分别为α,β,则有()A.α<βB.α>βC.α=βD.无法确定α与β大小8.(5分)函数f(x)=2sin(2x+)的图象为M,则下列结论中正确的是()A.图象M关于直线x=﹣对称B.由y=2sin2x的图象向左平移得到MC.图象M关于点(﹣,0)对称D.f(x)在区间(﹣,)上递增9.(5分)函数y=sin2(x﹣)的图象沿x轴向右平移m个单位(m>0),所得图象关于y轴对称,则m的最小值为()A.πB.C.D.10.(5分)已知f(x)是定义在R上的偶函数,且在区间(﹣∞,0)上单调递减,若实数a满足f(3|2a+1|)>f(﹣),则a的取值范围是()A.(﹣∞,﹣)∪(﹣,+∞)B.(﹣∞,﹣)C.(﹣,+∞)D.(﹣,﹣)11.(5分)已知α∈[,],β∈[﹣,0],且(α﹣)3﹣sinα﹣2=0,8β3+2cos2β+1=0,则sin(+β)的值为()A.0B.C.D.112.(5分)若区间[x1,x2]的长度定义为|x2﹣x1|,函数f(x)=(m∈R,m≠0)的定义域和值域都是[a,b],则区间[a,b]的最大长度为()A.B.C.D.3二、填空题:本大题共4小题,每小题5分,共20分.把答案填写在答题卡相应位置上.13.(5分)计算:log3+lg4+lg25+(﹣)0=.14.(5分)已知扇形的面积为4cm2,扇形的圆心角为2弧度,则扇形的弧长为.15.(5分)若α∈(0,π),且cos2α=sin(+α),则sin2α的值为.16.(5分)已知正实数x,y,且x2+y2=1,若f(x,y)=,则f(x,y)的值域为.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知全集U=R,函数的定义域为集合A,集合B={x|5≤x<7}(1)求集合A;(2)求(∁UB)∩A.18.(12分)在平面直角坐标系xOy中,若角α的始边为x轴的非负半轴,其终边经过点P(2,4).(1)求tanα的值;(2)求的值.19.(12分)已知二次函数f(x)=mx2+4x+1,且满足f(﹣1)=f(3).(1)求函数f(x)的解析式;(2)若函数f(x)的定义域为(﹣2,2),求f(x)的值域.20.(12分)已知函数f(x)=sin2ωx+2cosωxsinωx+sin(ωx+)sin(ωx﹣)(ω>0),且f(x)的最小正周期为π.(1)求ω的值;(2)求函数f(x)在区间(0,π)上的单调增区间.21.(12分)已知函数f(x)=log2()﹣x(m为常数)是奇函数.(1)判断函数f(x)在x∈(,+∞)上的单调性,并用定义法证明你的结论;(2)若对于区间[2,5]上的任意x值,使得不等式f(x)≤2x+m恒成立,求实数m的取值范围.22.(12分)已知函数f(x)=a(|sinx|+|cosx|)﹣sin2x﹣1,若f()=﹣.(1)求a的值,并写出函数f(x)的最小正周期(不需证明);(2)是否存在正整数k,使得函数f(x)在区间[0,kπ]内恰有2017个零点?若存在,求出k的值,若不存在,请说明理由.2016-2017学年重庆市六校联考高一(上)期末数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.(5分)=()A.B.C.D.【解答】解:cos=cos(π+)=﹣cos=﹣故选D.2.(5分)已知集合M={1,2},N={2,3,4},若P=M∪N,则P的子集个数为()A.14B.15C.16D.32【解答】解:集合M={1,2},N={2,3,4},则P=M∪N={1,2,3,4},∴P的子集有24=16个.故答案为:C.3.(5分)已知函数f(x)=,若f(﹣1)=f(1),则实数a的值为()A.1B.2C.0D.﹣1【解答】解:∵函数f(x)=,f(﹣1)=f(1),∴f(﹣1)=1﹣(﹣1)=2,f(1)=a,∵f(﹣1)=f(1),∴a=2.故选:B.4.(5分)若函数f(x)=ax2﹣bx+1(a≠0)是定义在R上的偶函数,则函数g(x)=ax3+bx2+x(x∈R)是()A.奇函数B.偶函数C.非奇非偶函数D.既是奇函数又是偶函数【解答】解:f(x)为偶函数,则b=0;∴g(x)=ax3+x;∴g(﹣x)=a(﹣x)3﹣x=﹣(ax3+x)=﹣g(x);∴g(x)是奇函数.故选A.5.(5分)设a=log2,b=()3,c=3,则()A.c<b<aB.a<b<cC.c<a<bD.b<a<c【解答】解:a=log2<0,b=()3∈(0,1),c=3>1.∴c>b>a.故选:B.6.(5分)已知tan(α﹣β)=,tan(﹣β)=,则tan(α﹣)等于()A.B.C.D.【解答】解:∵tan(α﹣β)=,tan(﹣β)=,∴tan(α﹣)=tan[(α﹣β)﹣(﹣β)]===.故选:C.7.(5分)方程x﹣logx=3和x﹣logx=3的根分别为α,β,则有()A.α<βB.α>βC.α=βD.无法确定α与β大小【解答】解:方程x﹣logx=3和x﹣logx=3,分别化为:log2x=3﹣x,log3x=3﹣x.作出函数图象:y=log2x,y=3﹣x,y=log3x.则α<β.故选:A.8.(5分)函数f(x)=2sin(2x+)的图象为M,则下列结论中正确的是()A.图象M关于直线x=﹣对称B.由y=2sin2x的图象向左平移得到MC.图象M关于点(﹣,0)对称D.f(x)在区间(﹣,)上递增【解答】解:∵函数f(x)=2sin(2x+)的图象为M,令x=﹣,可得f(x)=0,可得图象M关于点(﹣,0)对称,故图象M不关于直线x=﹣对称,故C正确且A不正确;把y=2sin2x的图象向左平移得到函数y=2sin2(x+)=2sin(2x+)的图象,故B不正确;在区间(﹣,)上,2x+∈(0,π),函数f(x)=2sin(2x+)在区间(﹣,)上没有单调性,故D错误,故选:C.9.(5分)函数y=sin2(x﹣)的图象沿x轴向右平移m个单位(m>0),所得图象关于y轴对称,则m的最小值为()A.πB.C.D.【解答】解:函数y=sin2(x﹣)==的图象沿x轴向右平移m个单位(m>0),可得y=的图象,再根据所得图象关于y轴对称,可得2m=(2k+1)•,k∈Z,即m═(2k+1)•,则m的最小值为,故选:D.10.(5分)已知f(x)是定义在R上的偶函数,且在区间(﹣∞,0)上单调递减,若实数a满足f(3|2a+1|)>f(﹣),则a的取值范围是()A.(﹣∞,﹣)∪(﹣,+∞)B.(﹣∞,﹣)C.(﹣,+∞)D.(﹣,﹣)【解答】解:∵函数f(x)是偶函数,∴f(3|2a+1|)>f(﹣),等价为f(3|2a+1|)>f(),∵偶函数f(x)在区间(﹣∞,0)上单调递减,∴f(x)在区间[0,+∞)上单调递增,∴3|2a+1|>,即2a+1<﹣或2a+1>,解得a<﹣或a>﹣,故选A.11.(5分)已知α∈[,],β∈[﹣,0],且(α﹣)3﹣sinα﹣2=0,8β3+2cos2β+1=0,则sin(+β)的值为()A.0B.C.D.1【解答】解:∵(α﹣)3﹣sinα﹣2=0,可得:(α﹣)3﹣cos()﹣2=0,即(﹣α)3+cos()+2=0由8β3+2cos2β+1=0,得(2β)3+cos2β+2=0,∴可得f(x)=x3+cosx+2=0,其,x2=2β.∵α∈[,],β∈[﹣,0],∴∈[﹣π,0],2β∈[﹣π,0]可知函数f(x)在x∈[﹣π,0]是单调增函数,方程x3+cosx+2=0只有一个解,可得,即,∴,那么sin(+β)=sin=.故选:B.12.(5分)若区间[x1,x2]的长度定义为|x2﹣x1|,函数f(x)=(m∈R,m≠0)的定义域和值域都是[a,b],则区间[a,b]的最大长度为()A.B.C.D.3【解答】解:函数f(x)=(m∈R,m≠0)的定义域是{x|x≠0},则[m,n]是其定义域的子集,∴[m,n]⊆(﹣∞,0)或(0,+∞).f(x)==﹣在区间[a,b]上时增函数,则有:,故a,b是方程f(x)=﹣=x的同号相异的实数根,即a,b是方程(mx)2﹣(m2+m)x+1=0同号相异的实数根.那么ab=,a+b=,只需要△>0,即(m2+m)2﹣4m2>0,解得:m>1或m<﹣3.那么:n﹣m==,故b﹣a的最大值为,故选:A.二、填空题:本大题共4小题,每小题5分,共20分.把答案填写在答题卡相应位置上.13.(5分)计算:log3+lg4+lg25+(﹣)0=.【解答】解:原式=+lg102+1=+2+1=.故答案为:.14.(5分)已知扇形的面积为4cm2,扇形的圆心角为2弧度,则扇形的弧长为4cm.【解答】解:设扇形的弧长为l,圆心角大小为α(rad),半径为r,扇形的面积为S,则:r2===4.解得r=2,∴扇形的弧长为l=rα=2×2=4cm,故答案为:4cm.15.(5分)若α∈(0,π),且cos2α=sin(+α),则sin2α的值为﹣1.【解答】解:∵α∈(0,π),且cos2α=sin(+α),∴cos2α=2sin(+α),∴(cosα+sinα)•(cosα﹣sinα)=(cosα+sinα),∴cosα+sinα=0,或cosα﹣sinα=(不合题意,舍去),∴α=,∴2α=,∴sin2α=sin=﹣1,故答案为:﹣1.16.(5分)已知正实数x,y,且x2+y2=1,若f(x,y)=,则f(x,y)的值域为[,1).【解答】解:x2+y2=1;∴=====;∵1=x2+y2≥2xy,且x,y>0;∴;∴1<1+2xy≤2;∴;∴;∴f(x,y)的值域为.故答案为:[,1).三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知全集U=R,函数的定义域为集合A,集合B={x|5≤x<7}(1)求集合A;(2)求(∁UB)∩A.【解答】解:(1)由题意可得:;解得3≤x<10;∴A={x|3≤x<10};(2)CUB={x|x<5或x≥7};∴(CUB)∩A={x|3≤x<5或7≤x<10}.18.(12分)在平面直角坐标系xOy中,若角α的始边为x轴的非负半轴,其终边经过点P(2,4).(1)求tanα的值;(2)求的值.【解答】解:(1)由任意角三角函数的定义可得:.(2)==.19.(12分)已知二次函数f(x)=mx2+4x+1,且满足f(﹣1)=f(3).(1)求函数f(x)的解析式;(2)若函数f(x)的定义域为(﹣2,2),求f(x)的值域.【解答】解:(1)由f(﹣1)=f(3)可得该二次函数的对称轴为x=1…(2分)即从而得m=﹣2…(4分)所以该二次函数的解析式为f(x)=﹣2x2+4x+1…(6分)(2)由(1)可得f(x)=﹣2(x﹣1)2+3…(9分)所以f(x
本文标题:2016-2017学年重庆市六校联考高一上期末数学试卷(含答案解析)
链接地址:https://www.777doc.com/doc-7558791 .html