您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2019中考一轮复习《第十七单元勾股定理》单元检测试卷(含答案)
2019中考数学一轮复习单元检测试卷第十七单元勾股定理考试时间:120分钟;满分:150分学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共10小题,每小题4分,共40分)1.下列各组数中,是勾股数的是()A.1、2、3B.3、4、5C.12、15、18D.1、、32.如果3,a,5是勾股数,则a的值是()A.4B.C.4或D.4或343.如图,在正方形网格中,每个正方形的边长为1,则在△ABC中,边长为无理数的边数是()A.0B.1C.2D.34.在△ABC中,∠B=90°,若BC=3,AC=5,则AB等于()A.2B.3C.4D.5.如图,在Rt△ABC中,∠C=90°,分别以各边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”,当AC=4,BC=2时,则阴影部分的面积为()A.4B.4πC.8πD.86.如图,数轴上点A对应的数是0,点B对应的数是1,BC⊥AB,垂足为B,且BC=2,以A为圆心,AC为半径画弧,交数轴于点D,则点D表示的数为()得分评卷人A.2.2B.C.D.7.我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.8.已知△ABC的三边为a,b,c,下列条件能判定△ABC为直角三角形的是()A.a:b:c=1:1:B.a:b:c=1:1:C.a:b:c=2:2:3D.a:b:c=:2:9.“折竹抵地”问题源自《九章算术》中,即:今有竹高一丈,末折抵地,去本四尺,问折者高几何?意思是:一根竹子,原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远(如图),则折断后的竹子高度为多少尺?(1丈=10尺)()A.3B.5C.4.2D.410.在《算法统宗》中有一道“荡秋千”的问题:“平地秋千未起,踏板一尺离地.送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几?”译文:“有一架秋千,当它静止时,踏板离地1尺,将它往前推送10尺(水平距离)时,秋千的踏板就和人一样高,这个人的身高为5尺,秋千的绳索始终拉得很直,试问绳索有多长?”.设这个人的身高是5尺,秋千的绳索始终拉的很直,则绳索长为()A.12.5尺B.13.5尺C.14.5尺D.15.5尺二、填空题(本大题共4小题,每小题5分,共20分)11.如图,长方形网格中每个小正方形的边长是1,△ABC是格点三角形(顶点都在格点上),则点C到AB的距离为.12.若CD是△ABC的高,AB=10,AC=6,BC=8,则CD的长为.13.有两根木棒,分别长6cm、5cm,要再在7cm的木棒上取一段,用这三根木棒为边做成直角三角形,这第三根木棒要取的长度是.14.勾股定理a2+b2=c2本身就是一个关于a,b,c的方程,满足这个方程的正整数解(a,b,c)通常叫做勾股数组.毕达哥拉斯学派提出了一个构造勾股数组的公式,根据该公式可以构造出如下勾股数组:(3,4,5),(5,12,13),(7,24,25),….分析上面勾股数组可以发现,4=1×(3+1),12=2×(5+1),24=3×(7+1),…分析上面规律,第5个勾股数组为.得分评卷人三、解答题(本大题共9小题,满分90分,其中第15,16,17,18题每题8分,19,20题每题10分,21,22题每题12分,23题14分)15.如图,在四边形ABCD中,∠B=∠D=90°,AB=BC=2,CD=1,求AD的长.16.某广场内有一块空地ABCD如图所示,现计划在空地上种草皮,经测量,∠B=90°,AB=6m,BC=8m,CD=26m,AD=24m.求四边形ABCD空地的面积.得分评卷人17.如图,正方形网格中每个小正方形边长都是1,小正方形的顶点称为格点,在正方形网格中分别画出下列图形:(1)在网格中画出长为的线段AB.(2)在网格中画出一个腰长为、面积为3的等腰△DEF.18.如果三角形有一边上的中线恰好等于这边的长,那么我们称这个三角形为“美丽三角形”,(1)如图△ABC中,AB=AC=,BC=2,求证:△ABC是“美丽三角形”;(2)在Rt△ABC中,∠C=90°,AC=2,若△ABC是“美丽三角形”,求BC的长.19.在甲村至乙村的公路有一块山地正在开发,现有一C处需要爆破.已知点C与公路上的停靠站A的距离为300米,与公路上的另一停靠站B的距离为400米,且CA⊥CB,如图所示.为了安全起见,爆破点C周围半径250米范围内不得进入,问在进行爆破时,公路AB段是否有危险而需要暂时封锁?请通过计算进行说明.20.如果a,b,c为正整数,且满足a2+b2=c2,那么,a、b、c叫做一组勾股数.(1)请你根据勾股数的意思,说明3、4、5是一组勾股数;(2)写出一组不同于3、4、5的勾股数;(3)如果m表示大于1的整数,且a=4m,b=4m2﹣1,c=4m2+1,请你根据勾股数的定义,说明a、b、c为勾股数.21.[问题情境]勾股定理是一条古老的数学定理,它有很多种证明方法,我国汉代数学家赵爽根据弦图,利用面积法进行证明,著名数学家华罗庚曾提出把“数形关系”(勾股定理)带到其他星球,作为地球人与其他星球“人”进行第一次“谈话”的语言.[定理表述]请你根据图1中的直角三角形,写出勾股定理内容;[尝试证明]以图1中的直角三角形为基础,可以构造出以a、b为底,以a+b为高的直角梯形(如图2),请你利用图2,验证勾股定理.22.阅读下列一段文字,然后回答下列问题.已知在平面内有两点P1(x1,y1)、P2(x2,y2),其两点间的距离P1P2=,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可化简为|x2﹣x1|或|y2﹣y1|.(1)已知A(2,4)、B(﹣3,﹣8),试求A、B两点间的距离;(2)已知M、N在平行于y轴的直线上,点M的纵坐标为4,点N的纵坐标为﹣1,试求M、N两点的距离为;(3)已知一个三角形各顶点坐标为D(1,6)、E(﹣2,2)、F(4,2),你能判定此三角形的形状吗?说明理由.(4)在(3)的条件下,平面直角坐标系中,在x轴上找一点P,使PD+PF的长度最短,求出点P的坐标及PD+PF的最短长度.23.如图1,A村和B村在一条大河CD的同侧,它们到河岸的距离AC、BD分别为1千米和4千米,又知道CD的长为4千米.(1)现要在河岸CD上建一水厂向两村输送自来水.有两种方案备选方案1:水厂建在C点,修自来水管道到A村,再到B村(即AC+AB).(如图2)方案2:作A点关于直线CD的对称点A',连接A'B交CD于M点,水厂建在M点处,分别向两村修管道AM和BM.(即AM+BM)(如图3)从节约建设资金方面考虑,将选择管道总长度较短的方案进行施工,请利用已有条件分别进行计算,判断哪种方案更合适.(2)有一艘快艇Q从这条河中驶过,当快艇Q在CD中间,DQ为多少时?△ABQ为等腰三角形?参考答案与试题解析一.选择题(共10小题)1.解:A、∵12+22≠32,∴不是勾股数,此选项错误;B、32+42=52,能构成直角三角形,是整数,故正确;C、122+152≠192,不能构成直角三角形,故错误;D、不是整数,此选项错误;故选:B.2.解:∵3,a,5是勾股数,∴a=4,故选:A.3.解:由题意:AB==,BC==2,AC==3,∵,2,3都是无理数,故选:D.4.解:在Rt△ABC中,∵∠B=90°,AC=5,BC=3,∴AB===4,故选:C.5.解:由勾股定理得,AB2=AC2+BC2=20,则阴影部分的面积=×AC×BC+×π×()2+×π×()2﹣×π×()2=×2×4+×π××(AC2+BC2﹣AB2)=4,故选:A.6.解:∵AB=1,BC=2,BC⊥AB,∴AC=AD==,∴点D表示的数为:.故选:D.7.解:A、∵+c2+ab=(a+b)(a+b),∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;B、∵4×+c2=(a+b)2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;C、∵4×+(b﹣a)2=c2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;D、根据图形不能证明勾股定理,故本选项符合题意;故选:D.8.解:A、设a=x,则b=x,c=x,∵(x)2+(x)2≠(x)2,∴此三角形不是直角三角形,故本选项不符合题意;B、设a=x,则b=x,c=x,∵(x)2+(x)2=(x)2,∴此三角形是直角三角形,故本选项符合题意;C、设a=2x,则b=2x,c=3x,∵(2x)2+(2x)2≠(3x)2,∴此三角形不是直角三角形,故本选项不符合题意;D、设a=x,则b=2x,c=x,∵(x)2+(2x)2≠(x)2,∴此三角形不是直角三角形,故本选项不符合题意;故选:B.9.解:设折断处离地面的高度OA是x尺,根据题意可得:x2+42=(10﹣x)2,解得:x=4.2,答:折断处离地面的高度OA是4.2尺.故选:C.10.解:设绳索长为x尺,则102+(x﹣5+1)2=x2,解得:x=14.5.故绳索长14.5尺.故选:C.二.填空题(共4小题)11.解:设点C到AB的距离为h,∵AB==5,∴S△ABC=×2×3=×5×h,∴h=1.2,故答案为:1.2.12.解:∵AB=10,AC=6,BC=8,∴AB2=AC2+BC2,∴∠ACB=90°,∴•AB•CD=•AC•BC,∴CD==4.8,故答案为4.8.13.解:①6cm是直角边,第三根木棒要取的长度是=cm(舍去);②6cm是斜边,第三根木棒要取的长度是=cm.故答案为:cm.14.解:由勾股数组:(3,4,5),(5,12,13),(7,24,25)…中,4=1×(3+1),12=2×(5+1),24=3×(7+1),…可得第4组勾股数中间的数为4×(9+1)=40,即勾股数为(9,40,41);第5组勾股数中间的数为:5×(11+1)=60,即(11,60,61),故答案为:(11,60,61).三.解答题(共9小题)15.解:连接AC,∵∠B=90°∴AC2=AB2+BC2.∵AB=BC=2∴AC2=8.∵∠D=90°∴AD2=AC2﹣CD2.∵CD=1,∴AD2=7.∴.16.解:连接AC,在Rt△ABC中,AC2=AB2+BC2=62+82=102,∴AC=10.在△DAC中,CD2=262,AD2=242,而242+102=262,即AC2+AD2=CD2,∴∠DCA=90°,S四边形ABCD=S△BAC+S△DAC=•BC•AB+DC•AC,=×8×6+×24×10=144(m)2,答:四边形ABCD空地的面积是144m2.17.解:(1)如图所示:线段AB即为所求;(2)△DEF即为所求.18.(1)证明:过点A作AD⊥BC于D,∵AB=AC,AD⊥BC,∴BD=BC=1,由勾股定理得,AD==2,∴AD=BC,即△ABC是“美丽三角形”;(2)解:当AC边上的中线BD等于AC时,如图2,BC==3,当BC边上的中线AE等于BC时,AC2=AE2﹣CE2,即BC2﹣(BC)2=(2)2,解得,BC=4,综上所述,BC=3或BC=4.19.解:公路AB需要暂时封锁.理由如下:如图,过C作CD⊥AB于D.因为BC=400米,AC=300米,∠ACB=90°,所以根据勾股定理有AB=500米.因为S△ABC=AB•CD=BC•AC所以CD===240米.由于240米<250米,故有危险,因此AB段公路需要暂时封锁.20.解:(1)∵3、4、5是正整数,且32+42=52,∴3、4、5是一组勾股数;(2)∵122+162=202,且12,16,20都是正整数,∴一组勾股数可以是12,16,20.答案不唯一;故答案为12,16,20(3)∵m表示大于1的整数,∴由a=4m,b=4m2﹣1,c=4m2+1得到a、b、c均为正整数;又∵a2+b2=(4m)2+(4
本文标题:2019中考一轮复习《第十七单元勾股定理》单元检测试卷(含答案)
链接地址:https://www.777doc.com/doc-7561378 .html