您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 黑龙江省哈尔滨市2017—2018学年度风华中学九年级2月份数学学科知识测试
风华中学2017—2018学年度九年级下学期2月考试一、填空题(每题3分,本题共30分)1.下列各数中,小于﹣2的数是()A.2B.1C.﹣1D.﹣42.下列运算正确的是()A.623aaaB.633)(xxC.1055xxxD.448aaa3.下列图形中,既是中心对称,又是轴对称图形的是()A.B.C.D.4.在反比例函数y=的图象的每一条曲线上,y都随x的增大而增大,则k的值可以()A.﹣1B.0C.1D.25.下图是由几个相同的小正方体搭成的一个几何体,它的俯视图是()A.B.C.D.6.不等式组01012xx>的解集是().A.x>21B.﹣1≤x<21C.x<21D.x≥﹣17.某农机厂一月份生产零件50万个,第一季度共生产零件182万个.设该厂二、三月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x)2=182B.50+50(1+x)+50(1+x)2=182C.50(1+2x)=182D.50+50(1+x)+50(1+2x)2=182第10题8.如图,有一轮船在A处测得南偏东30°方向上有一小岛F,轮船沿正南方向航行至B处,测得小岛F在南偏东45°方向上,按原方向再航行10海里至C处,测得小岛F在正东方向上,则A,B之间距离是()A.10海里B.(10-10)海里C.10海里D.(10-10)海里9.如图,点F是矩形ABCD的边CD上一点,射线BF交AD的延长线于点E,则下列结论错误的是()A.B.C.D.10.清清从家步行到公交车站台,等公交车去学校.下公交车后又步行了一段路程才到学校.图中的折线表示清清离家后所走路程s(米)与所花时间t(分)之间的函数关系.下列说法错.误.的是()A.清清等公交车时间为3分钟B.清清步行的速度是80米/分C.公交车的速度是500米/分D.清清全程的平均速度为290米/分二、填空题(每题3分,本题共30分)11.2012年广东省人口数超过104000000,将104000000这个数用科学记数法表示为.12.二次根式2x中x的取值范围是是.13.化简:188=14.分解因式:4a2-16=.15.如图,AB是⊙O的直径,C,D两点在⊙O上,∠BCD=25°,则∠AOD的度数为.16.一个扇形的面积为2πcm²,半径OA=3cm,则这个扇形的圆心角为______°17.二次函数22(4)8yx的最大值为_________18.已知矩形ABCD中,点E为CD的中点,F为AB上一点,连接EF、DF,若AB=4,BC=2,EF=5,则DF=_________19.袋中装有大小相同的2个红球和2个绿球,先从袋中摸出1个球后放回,混合均匀后再摸出1个球,则两次摸到的球中有1个绿球和1个红球的概率是.20.已知:四边形ABCD,对角线AC,BD交于点E,AB⊥BD于B,∠BCD+2∠ABC=360°,BD=2,AC=10,则tan∠AEB=.三.解答题21.(7分)先化简,再求值:÷(x+2﹣),其中x=2cos45°﹣tan60°.22.(7分)如图,在小正方形的边长均为1的方格纸中,有线段AB和线段CD,点A、B、C、D均在小正方形的顶点上.(1)在方格纸中画出以A为直角顶点的直角三角形ABE,点E在小正方形的顶点上,且△ABE的面积为5;(2)在方格纸中画出以CD为一边的锐角三角形△CDF,点F在小正方形的顶点上,且△CDF的面积为3,CF与(1)中所画线段AE平行,连接BF,请直接写出线段BF的长.23.(7分)某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有名;(2)把条形统计图补充完整;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校18000名学生一餐浪费的食物可供多少人食用一餐?24.如图,平行四边形ABCD,E、F两点在对角线BD上,且BE=DF,连接AE,EC,CF,FA.(1)求证:四边形AECF是平行四边形.(2)若AF=EF,∠BAF=108°,∠CDF=36°,直接写出图中所有与AE相等的线段(除AE外).25..某商店用1050元购进第一批某种文具盒,很快卖完.又用1440元购进第二批该种文具盒,但第二批每只文具盒的进价是第一批进价的1.2倍,数量比第一批多了10只.(1)求第一批每只文具盒的进价是多少元?(2)第二批文具盒按24元/只的价格销售,销售一定数量后,根据市场情况,商店决定对剩余的文具盒全部按6折一次性打折销售,但要求第二批文具盒的利润率不低于20%,问至少销售多少只后开始打折?26.已知:如图AB为⊙O的直径,AC与⊙O相切于点A,连接BC交圆于点D,过点D作⊙O的切线交AC于E.(1)求证:AE=CE(2)如图2,在弧BD上任取一点F连接AF,弦GF与AB交于H,与BC交于M,求证:∠FAB+∠FBM=∠EDC.(3)如图,在(2)的条件下,当当GH=FH,HM=MF时,tan∠ABC=34,DE=394时,N为圆上一点,连接FN交AB于L,满足∠NFH+∠CAF=∠AHG,求LN的长.27.(本题10分)已知:抛物线y=ax2-3ax-4与x轴交于A,B两点(A在左边),与y轴交于C点,当tan∠ACO=14时.(1)求抛物线的解析式.(2)P为抛物线上第四象限上一动点,连接AC,过点P作PM∥AC,PM与直线BC交于点M,设P的横坐标t,PM的长为d,求出d与t的函数关系,并直接写出t的取值范围.(3)在(2)的条件下,连接OP,过点C作CN⊥OP于点N,直线CN交抛物线于点Q,过Q作QK⊥y轴于K,连接BN交QK于L当LN=LQ时,求Q的坐标
本文标题:黑龙江省哈尔滨市2017—2018学年度风华中学九年级2月份数学学科知识测试
链接地址:https://www.777doc.com/doc-7565312 .html