您好,欢迎访问三七文档
-I-第1章绪论1.1课题背景温度计是人类社会生产和生活中必不可少的一种测量装置,在农业、工业和各种高新技术领域的开发和研究中,温度也是一个非常关键的测量参数。因此,它的发展与各行业的发展紧密相关。目前,随着电子信息技术的发展,传感技术的广泛应用,温度计已向自动化、数字化方向发展,代表了温度计量发展的最前沿。随着科学技术的不断发展,人们发明了各式各样的,各种用途的温度计,根据所用测温物质的不同和测温范围的不同,有煤油温度计、酒精温度计、水银温度计、气体温度计、电阻温度计、温差电偶温度计、辐射温度计和光测温度计等。近年来,随着人们生活水平的不断提高,数字化的不断发展,数字温度计的出现对人们的生产生活产生了巨大影响。在国外,温度计的发展始于1593年,由意大利科学家伽利略(1564~1642)发明了第一支温度计,后来又相继出现华氏温度计、列式温度计、摄氏温度计,均用水银和酒精等作为测温物质。现在英、美国家多用华氏温度计,德国多用列氏温度计,而在世界科技界和工农业生产中,我国和法国等大多数国家多采用摄氏温度计,随着科学技术的发展和现代工业技术的需要,测温技术也在不断地改进和提高,测温范围变得越来越广,精度越来越高。现代化的温度检测手段能达到的精度、灵敏度及测量范围等,在很大程度上决定了科学技术的发展水平。同时,科学技术的发展水平又为温度检测技术、传感器技术提供了新的前提手段。目前温度计的发展很快,从原始的玻璃管温度计发展到了现在的热电阻温度计、热电偶温度计、数字温度计、电子温度计等。温度传感器应用非常广泛,而温度计中传感器是它的重要组成部分,传感器的精度灵敏度基本决定了温度计的精度、测量范围、控制范围和用途等。本文研究的数字温度计,它是通过一定的电路和温度传感器进行测控,将温度用数字准确的显示出来,具有数据显示直观,测量精度高,测温范围-2-广等优点。1.2课题的目的和意义随着科学技术日益迅速的发展,数字监控系统已经深入到生活的各个方面。数字温度表具有技术效果好,经济效益高,技术先进,造价较低,可靠性高,维修方便等许多优点。数字温度表摆脱传统水银温度计在使用时的弊端,以其准确快捷的测量功能和清晰易懂的数字化显示方便人们日常生活使用。温度是我们日常生活中实时接触到的物理量,但是它是看不到的,仅凭感觉只能估测到大概的温度值。传统的水银温度计虽然能指示温度,但是精度低,反应速度慢,误差大,显示不够直观。数字温度计的出现可以让人们直观的了解自己想知道的温度到底是多少。当前,主要温度仪表,如热电偶、热电阻及辐射温度计等在技术上已经成熟,但是它们只能在传统的场合应用,尚不能满足简单、快速、准确测温的要求,尤其是高科技领域。因此,各国专家都在有针对性地竞相开发各种新型温度传感器及特殊与实用测温技术,如采用光纤、激光及遥感或存储等技术的新型温度计已经实用化。由于许多质量高、价格低,使用简单的传感器和数字化测量仪表一起使用,以及微型计算机、微处理器和各种大规模集成电路的迅速普及,使今天的数字测量仪表远优于传统的测量仪表。数字化测量是一种发展十分迅速的综合性应用技术。利用数字化测量仪表的计量技术、测量系统,不但能可靠地获得大量准确的信息,而且能极其迅速地对信号进行有效的处理,还可以实现自动化测量功能。因此作为自动化、智能化测量系统的基础和核心的数字化仪器仪表,在我国现代化建设中将发挥越来越重要的作用。本文介绍了利用集成温度传感器AD590设计并制作的一款基于4位数码管显示的数字温度计能有效克服传统的缺点和不足,与传统的温度计相比,输出温度采用数码管显示,具有读数方便、测温稳定准确、精度高、测量范围广、低能耗等优点,很适合日常温度的测量。1.3课题的技术要求(1)利用温度传感器制作三位半数显温度表。(2)温度的测量范围:-30℃~+100℃(243K~373K)。(3)测量精度要求≤±1℃。-3-(4)利用电池供电。-4-第2章系统设计与方案论证2.1系统主体设计方案多数的数字温度计采用温度敏感元件也就是温度传感器(如铂电阻,热电偶,半导体,热敏电阻等),将随温度变化而变化的物理参数,如膨胀、电阻、电容、热电动势、磁性、频率、光学特性等通过温度传感器转变成电信号的变化,如电压和电流的变化,温度变化和电信号的变化有一定的关系,如线性关系,曲线关系等,将电信号经过放大电路放大后使之产生适合模数转换器转换的电信号,再经过模数转换电路即用A/D转换器将模拟信号转换为数字信号,数字信号送给驱动电路输出,然后通过显示单元,如数码管或者LCD等显示出来,这样就完成了数字温度计的基本测温功能。本设计方案的核心是A/D转换器ICL7107,它包括了线性放大器、模拟开关、时钟振荡器、七段译码、显示驱动器等部件。并且它是三位半双积分型A/D转换器,属于CMOS大规模集成电路,最大显示值为1999,最小分辨率为100μV。能直接驱动共阳极LED数码管,不需要另加驱动器件,无需另行设计放大电路、模数转换电路、驱动电路等,使硬件电路的构成大大简化,减少了各级之间的干扰。系统主体设计原理图如图2-1所示。图2-1系统主体设计原理图下面详细地介绍了各部分的组成及设计原理。测温电路主要是由温度传感器和与传感器有关的电阻等组成,将温度的变化转换成电流或电压的变化,输出给下一级放大电路;放大电路主要由集测温电路放大电路模数转换电路驱动电路显示电路-5-成运放及其外接电容、电阻等组成,用以放大由测温电路产生的微弱电信号,使之满足模数转换电路工作需要的电压或电流;模数转换电路由A/D转换器构成,将放大电路输出的模拟电信号转换成能够使驱动电路工作的数字信号;驱动电路由译码器及其外围电路组成,用来驱动数码管或LCD液晶屏等显示器;显示电路由七段数码管或LCD液晶屏构成,用来显示当前所测环境的摄氏温度值。2.2系统硬件电路的设计方案系统硬件电路的设计采用了模块化的设计方法,系统硬件电路由符号显示模块、十位显示模块、个位显示模块、小数位显示模块、A/D转换器模块、测温电路模块、积分电路模块、零点校准电路模块、沸点校准电路模块、时钟振荡电路模块、负5V供电电路模块等十一部分组成。系统硬件电路方框图如图2-2所示。图2-2系统硬件电路方框图本章小结本章介绍了数字温度计的整体设计思路,并通过方案比较确定了最终的设计方案,由于引入了模块化的设计思想,使各单元结构明确,条理清晰,符号位显示十位显示个位显示小数位显示三位半A/D转换器ICL7107时钟振荡电路负5V供电电路沸点校准电路零点校准电路测温电路积分电路-6-给后续的安装和调试工作带来了极大的方便。通过大量文献和资料的查阅,本章介绍的数字温度计中的温度传感器需要查传感器应用方面的知识,相关的热偶传感器和PN结传感器等,通过了解这些传感器可以深入了解温度传感器工作原理,在数字温度计中的作用。接下来查阅的资料是关于数字电路这一块,需要查阅的资料是数字电路中A/D转换的原理,可以查阅的书籍有模拟电路、数字电路和实验方面的书籍。绘制电路图过程中,查阅关于CAD的书籍等。-7-第3章系统单元电路的设计3.1显示电路的设计3.1.1数码管显示原理数码管按段数分为七段数码管和八段数码管,这两种都是我们最常用的,八段数码管比七段数码管多了一个小数点,除此之外,其它方面基本相同。所谓的八段就是指数码管里有八个小LED发光二极管,通过控制不同的LED的亮灭来显示出不同的字型。数码管按发光二极管单元连接方式又分为共阴极和共阳极两种类型,共阴极就是将八个LED的阴极连在一起,让其接地,这样给任何一个LED的另一端高电平,它便能点亮。而共阳极就是将八个LED的阳极连在一起,形成公共阳极(COM)的数码管。共阳数码管在应用时应将公共极COM接到+5V,当某一字段发光二极管的阴极为低电平时,相应字段就点亮。当某一字段的阴极为高电平时,相应字段就不亮。共阴数码管是指将所有发光二极管的阴极接到一起形成公共阴极(COM)的数码管。共阴数码管在应用时应将公共极COM接到地线GND上,当某一字段发光二极管的阳极为高电平时,相应字段就点亮。当某一字段的阳极为低电平时,相应字段就不亮。3.1.2三位半数显表工作原理三位半的意思是该表有三位可以显示0~9的数码管,还有一位最高位是只能显示0和1,这个最高位如果是1,后三位是999,那么就是1999,约等于2000。最高位的权重是1000/2000即1/2。三位半数显表是指最大显示数为1999的仪表,“三”是指后面三位能显示完全十进制(0~9)的数目,“半”是指1999进位后能达到的整数位“2”和首位数“1”即1/2,多用于集成电路ICL7106或7107等专用IC设计。本文介绍的三位半数显表由四个八段数码管组成,用来显示实测温度,从低至高位依次为小数位、个位、十位、符号位。由于ICL7107内部具有译码驱动功能,所以不需另接译码器就能很好的控制LED,以便实时显示温度值。采用LED显示方式,由于其具有亮度高、显示醒目、使用寿命长、方便、价格低廉等优点在工业用仪器仪表中得到广泛应用。图3-1为利用四个数码管组成的三位半数显表电路图。-8-abfcgdeDPY1234567abcdefg8dpdpabfcgdeDPY1234567abcdefg8dpdpabfcgdeDPY1234567abcdefg8dpdpabfcgdeDPY1234567abcdefg8dpdpR5300R1300R2300R3300R4300910910910910VCCVCCVCCVCC图3-1三位半数显表电路图3.2A/D转换电路的设计3.2.1ICL7107的特点与引脚功能A/D转换电路的设计采用ICL7107,它是三位半双积分型A/D转换器,属于CMOS大规模集成电路,它的最大显示值为士1999,最小分辨率为100μV。能直接驱动共阳极LED数码管,不需要另加驱动器件,使整机线路简化,采用士5V两组电源供电,在芯片内部从V与COM之间有一个稳定性很高的2.8V基准电源,通过电阻分压器可获得所需的基准电压。能通过内部的模拟开关实现自动调零和自动极性显示功能。输入阻抗高,对输入信号无衰减作用。整机组装方便,无需外加有源器件,配上电阻、电容和LED共阳极数码管,就能构成一只直流数字电压表头。噪音低,温漂小,具有良好的可靠性,寿命长。芯片本身功耗小于15mw(不包括LED),不设有专门的小数点驱动信号。使用时可将LED共阳极数数码管公共阳极接V,可以方便的进行功能检查,ICL7107引脚图如图3-2所示。-9-V+1Du2Cu3Bu4Au5Fu6Gu7Eu8Dt9Ct10Bt11At12Ft13Et14Dh15Bh16Fh17Eh18ABK19RM20GND21Gh22Ah23Ch24Gt25V-26INT27BUF28AZ29IN-30IN+31COM32Cref-33Cref+34Vref-35Vref+36TEST37OSC338OSC239OSC140ICL7107图3-2ICL7107引脚图V和V分别接电源的正极和负极;u~uG、t~tG、h~hG分别为个位、十位、百位笔画的驱动信号,依次接各LED数码管的相应笔画电极;ABK为千位笔画驱动信号,接千位LED数码管;RM为LED数码管公共电极的驱动端,接LED共阳数码管的5脚和10脚;1OSC~3OSC为时钟振荡器的引出端,外接阻容或石英晶体组成的振荡器;第38脚至第40脚电容量的选择按式(3-1)计算:OSCF=0.45/RC(3-1)COM为模拟信号公共端,简称“模拟地”,使用时一般与输入信号的负端以及基准电压的负极相连;TEST为测试端,该端一般不用,使用时需经过500Ω电阻接至逻辑电路的公共地,故也称“逻辑地”或“数字地”;Vref与Vref为基准电压正负端;Cref与Cref为外接基准电容端;27脚INT接积分电容器,必须选择温度系数小不致使积分器的输入电压产生漂移现象的元件;IN和IN为模拟量输入端,分别接输入信号的正端和负端;AZ为积分器和比较器的反向输入端,接自动
本文标题:电子温度计
链接地址:https://www.777doc.com/doc-75936 .html