您好,欢迎访问三七文档
当前位置:首页 > 高等教育 > 大学课件 > 大学课件-概率论之习题解答
习题解答1-10房间中有4个人,试问没有2个人的生日在同一个月份的概率是多少?第一章解441212Pp1-7已知10个电子管中有7个正品和3个次品,每次任意抽取1个来测试,测试后不再放回去,直至把3个次品都找到为止,求需要测试7次的概率。解81710472613PPPCp1-13将3个球放置到4个盒子中去,求下列事件的概率:(1)A={没有一个盒子里有2个球};(2)B={3个球全在一个盒子内}。解33143334444)(4!44)(CBPPAP设A={取出的牌中至少有2张牌的花色相同}则A={取出的3张牌中没有花色是相同的}1-19在一副扑克牌中,任取3张,求取出的牌中至少有2张牌的花色相同的概率。解65.0)(1)(35.01488245272813)(354334APAPPPAP602.0)(1)(398.01326005272813)(352334APAPPPAP课本后的答案是把扑克牌当作52张。第二章5、解:相互独立。与CBABAPCPBPAPBPAPCPCPBPAPCPBPCPAPABCPBCPACPBCACPBCACCBA)()()]()()()()[()()()()()()()()()()()()(7、解:(1)A={点数之和为偶数}B={点数之和等于8}18536/1836/5)()()()()()}4,4()3,5()5,3(,)2,6(,)6,2{(18APBPAPABPABPBrA,,8、解:6.04332541)()()(1)(1)(41)(,31)(,51)(321321321321APAPAPAAAPAAAPAPAPAP设Ai={第i人破译出密码}i=1,2,39、解:10110/110/110/1}3{}4{}4{}3,4{)()()()1(221121PPPPAPABPABP)}4,3(),3,4(),2,5(),5,2(),1,6(),6,1{(}7{61100/6100/1}7{100/1)()()()2(2121其中PBPABPBAP14、解:A={产品为正品}B={产品经检验为正品}0545.005.09.095.001.0)()()()()()1(99.0)(9.0)(95.0)(APABPAPABPBPABPABPAP1743.00545.095.001.0)()()()()()()2(BPAPABPBPBAPBAP16、解:A={被诊断患有肺癌}B={确实患有肺癌}7519.00391.003.098.0)()()()()()(0391.097.001.003.098.0)()()()()(APAPABPAPABPABPBPBAPBPBAPAP=0006.09609.003.002.0)()()()()()(APBPBAPAPBAPABP19、解:A={出现正面}Bi={是第i个硬币}1012/15141)()()()()2(2151)14321410()()()()1(22251APBPBAPABPBPBAPAPiii75.04.013.0432.0211.041)()()()3(51iiiBPBAPAP21、解:Ai={第i件产品,经检验为正品}Bi={第i件产品是正品}C={这批元件能出厂}显然P(C)=P(A1A2A3)=P(A1)P(A2)P(A3)9524.0100405.01009699.0)()()()()(1111111BPBAPBPBAPAP9524.0100405.01009699.0)()()()()(2222222BPBAPBPBAPAP9524.0)100961(05.01009699.0)()()()()(3333333BPBAPBPBAPAP8639.09524.0)()()()(3321APAPAPCP22、解:Ai={产品来自第i箱}757.0)775.01(06.0775.096.0)()()()()(775.0315171731412123152020)()()()1(31BPBCPBPBCPCPAPABPBPiiiB={产品是合格品}C={产品经检验为合格品}982.0757.096.0775.0)()()()()()()2(CPBCPBPCPCBPCBP第三章1、解0)()1)()(],[,0],[,1xFaxdttfxFbaxbaxabxfx则的密度函数为:bxbxaaxabaxxFdttfdttfdttfxFbxabaxabaxdttfdttfxFbxaxbbaaxaa10)(1010)()()()()30)()()()2002、解0}{)(0)321}{)(10)21}{)(1)1xPxFxxxPxFxxPxFx12、解以ξ表示300台分机中,向总机要外线的分机数。%62.92!9}13{9,03.0,30097.003.0}13{1309130300300kkkkkkekPnppnCP利用近似公式计算。14、解211111}11{11)22(111111122arctgxdxxPAAAarctgxdxxA15、解104121)(2)341214121)(20)22121)(0)1)()(220000xtxtxxtxdtdtdtexFxxdtdtexFxedtexFxdttxF16、解4.02)(1002)()(11)(lim)1(7.03.07.03.01xdxdxxfxxdxxdFxfAxFAFx其它18、解32301}3010{3000301)(103010dxPxxf其它分钟。则点设公共汽车到达时间为19、解%72.2)1(12}8.0{}10810{18.0256dxxxPP23、解271)1()2278)1(131100}150{033330031501002ppCppCdxxPp所求概率=)所求概率=表示电子管的寿命。设25、解符合要求。=99.09973.0}150{)28665.0)11.1()18200180(1}180{1}180{)1PPP27、解1112108)1(3)21(321)(1)(211212)1(22yyyyabyayyabyba即-其中=令其它-1108)1(3)(2yyy其它故即其中=令01023)(10123)(3}{}{}{)()2(2121230222yyyfyyyyfydxxyyPyPyPyFy28、解0)(0]2)(lnexp[211)(ln1)(ln)()(0)(ln}ln{}{}{)(22yfyayyyyfydyydFdyydFyfyyFyPyePyPyF时,当时当29、解)(3131)()()()(}{}{}{)(332323333yyydyydFdyydFyfyFyPyPyPyF其它=其它10031)(31)(1001)(32332yyyyyfxx30、解yeyyfeeefeedyedFdyydFyfeFePyPyPyFyeyyyyyyyy)2exp(2)(2)(2121)()()()(}{}ln2{}{)(222222222即第四章5、0),(21)1(),(},{),(),(04),(),(yxFxdsdttsyxPyxFByxyxxy其它的密度函数211(x,y)st211(x,y)0),(0)2(yxFy)122(2)]21()21[(214),(120021)3(yxyyyxxyxFxyx且211(x,y)2214)12)(21(214),(12021)4(xxxyxFyxx且211(x,y))21(2]2121[214),(100)5(yyyyyxFyx且211(x,y)1),(10)6(yxFyx且211(x,y)16、第五章2、3'2222'1101211)1(1111111xxxkkxxkxxxxkkkkkk时当pqqpqkqpqkpqEkkkk211011pqpqkkkpqpqkkpqkEkkkkkkkk22112022)()(pqpqDpqpqpqqpqpqqkkpqkk2222322222)1(2)1(3、021dxexEx2222100020222dxxedxxeexdxexdxexExxxxx2DDtgEtDEtEEEtttEEtEtg取最小值时,当)()(2)()(22222225、7、2)(22)2(000dxexedxxeExxx41)(04033dxedxeeeExxx8、dxaxxdxeedxeaExaxxx22222ln22ln22exp2121212222aeaaadxaxaa22ln22222222ln2lnexp2)ln(exp21ln2lnexpaxxeaaadxaxxdxeaE2222ln22222222222ln2ln2exp2ln42exp2121)1(22222222lnln2ln2ln2222aaaaeeaeaeaEED12、EEE),cov(),cov(2)(DDD0),cov(0r因为所以结论成立。13、228)sin(214)sin(2121121)sin(2202022220202020dxdyyxxEEdxdyyxxEEAAdxdyyxA1612),cov(12)sin(21221622020222EEEdxdyyxxyEEEDD22161612),cov(22DD14、12A613231),(01),(),(10)1(2010)1(201
本文标题:大学课件-概率论之习题解答
链接地址:https://www.777doc.com/doc-7615073 .html