您好,欢迎访问三七文档
椭圆椭圆及其标准方程◆知识与技能目标理解椭圆的概念,掌握椭圆的定义、会用椭圆的定义解决实际问题;理解椭圆标准方程的推导过程及化简无理方程的常用的方法;了解求椭圆的动点的伴随点的轨迹方程的一般方法..◆过程与方法目标(1)预习与引入过程当变化的平面与圆锥轴所成的角在变化时,观察平面截圆锥的截口曲线(截面与圆锥侧面的交线)是什么图形?又是怎么样变化的?特别是当截面不与圆锥的轴线或圆锥的母线平行时,截口曲线是椭圆,再观察或操作了课件后,提出两个问题:第一、你能理解为什么把圆、椭圆、双曲线和抛物线叫做圆锥曲线;第二、你能举出现实生活中圆锥曲线的例子.当学生把上述两个问题回答清楚后,要引导学生一起探究P41页上的问题(同桌的两位同学准备无弹性的细绳子一条(约10cm长,两端各结一个套),教师准备无弹性细绳子一条(约60cm,一端结个套,另一端是活动的),图钉两个).当套上铅笔,拉紧绳子,移动笔尖,画出的图形是椭圆.启发性提问:在这一过程中,你能说出移动的笔小(动点)满足的几何条件是什么?〖板书〗2.1.1椭圆及其标准方程.(2)新课讲授过程(i)由上述探究过程容易得到椭圆的定义.〖板书〗把平面内与两个定点1F,2F的距离之和等于常数(大于12FF)的点的轨迹叫做椭圆(ellipse).其中这两个定点叫做椭圆的焦点,两定点间的距离叫做椭圆的焦距.即当动点设为M时,椭圆即为点集P12|2MMFMFa.(ii)椭圆标准方程的推导过程提问:已知图形,建立直角坐标系的一般性要求是什么?第一、充分利用图形的对称性;第二、注意图形的特殊性和一般性关系.无理方程的化简过程是教学的难点,注意无理方程的两次移项、平方整理.设参量b的意义:第一、便于写出椭圆的标准方程;第二、,,abc的关系有明显的几何意义.类比:写出焦点在y轴上,中心在原点的椭圆的标准方程222210yxabab.(iii)例题讲解与引申例1已知椭圆两个焦点的坐标分别是2,0,2,0,并且经过点53,22,求它的标准方程.分析:由椭圆的标准方程的定义及给出的条件,容易求出,,abc.引导学生用其他方法来解.另解:设椭圆的标准方程为222210xyabab,因点53,22在椭圆上,则22222591104464aabbab.例2如图,在圆224xy上任取一点P,过点P作x轴的垂线段PD,D为垂足.当点P在圆上运动时,线段PD的中点M的轨迹是什么?分析:点P在圆224xy上运动,由点P移动引起点M的运动,则称点M是点P的伴随点,因点M为线段PD的中点,则点M的坐标可由点P来表示,从而能求点M的轨迹方程.引申:设定点6,2A,P是椭圆221259xy上动点,求线段AP中点M的轨迹方程.解法剖析:①(代入法求伴随轨迹)设,Mxy,11,Pxy;②(点与伴随点的关系)∵M为线段AP的中点,∴112622xxyy;③(代入已知轨迹求出伴随轨迹),∵22111259xy,∴点M的轨迹方程为223112594xy;④伴随轨迹表示的范围.例3如图,设A,B的坐标分别为5,0,5,0.直线AM,BM相交于点M,且它们的斜率之积为49,求点M的轨迹方程.分析:若设点,Mxy,则直线AM,BM的斜率就可以用含,xy的式子表示,由于直线AM,BM的斜率之积是49,因此,可以求出,xy之间的关系式,即得到点M的轨迹方程.解法剖析:设点,Mxy,则55AMykxx,55BMykxx;代入点M的集合有4559yyxx,化简即可得点M的轨迹方程.引申:如图,设△ABC的两个顶点,0Aa,,0Ba,顶点C在移动,且ACBCkkk,且0k,试求动点C的轨迹方程.引申目的有两点:①让学生明白题目涉及问题的一般情形;②当k值在变化时,线段AB的角色也是从椭圆的长轴→圆的直径→椭圆的短轴.椭圆椭圆的简单几何性质◆知识与技能目标了解用方程的方法研究图形的对称性;理解椭圆的范围、对称性及对称轴,对称中心、离心率、顶点的概念;掌握椭圆的标准方程、会用椭圆的定义解决实际问题;通过例题了解椭圆的第二定义,准线及焦半径的概念,利用信息技术初步了解椭圆的第二定义..◆过程与方法目标(1)复习与引入过程引导学生复习由函数的解析式研究函数的性质或其图像的特点,在本节中不仅要注意通过对椭圆的标准方程的讨论,研究椭圆的几何性质的理解和应用,而且还注意对这种研究方法的培养.①由椭圆的标准方程和非负实数的概念能得到椭圆的范围;②由方程的性质得到椭圆的对称性;③先定义圆锥曲线顶点的概念,容易得出椭圆的顶点的坐标及长轴、短轴的概念;④通过P48的思考问题,探究椭圆的扁平程度量椭圆的离心率.〖板书〗§2.1.2椭圆的简单几何性质.(2)新课讲授过程(i)通过复习和预习,知道对椭圆的标准方程的讨论来研究椭圆的几何性质.提问:研究曲线的几何特征有什么意义?从哪些方面来研究?通过对曲线的范围、对称性及特殊点的讨论,可以从整体上把握曲线的形状、大小和位置.要从范围、对称性、顶点及其他特征性质来研究曲线的几何性质.(ii)椭圆的简单几何性质①范围:由椭圆的标准方程可得,222210yxba,进一步得:axa,同理可得:byb,即椭圆位于直线xa和yb所围成的矩形框图里;②对称性:由以x代x,以y代y和x代x,且以y代y这三个方面来研究椭圆的标准方程发生变化没有,从而得到椭圆是以x轴和y轴为对称轴,原点为对称中心;③顶点:先给出圆锥曲线的顶点的统一定义,即圆锥曲线的对称轴与圆锥曲线的交点叫做圆锥曲线的顶点.因此椭圆有四个顶点,由于椭圆的对称轴有长短之分,较长的对称轴叫做长轴,较短的叫做短轴;④离心率:椭圆的焦距与长轴长的比ace叫做椭圆的离心率(10e),椭圆图形越扁时当01a,,b,ce;椭圆越接近于圆时当a,b,ce00.(iii)例题讲解与引申、扩展例4求椭圆221625400xy的长轴和短轴的长、离心率、焦点和顶点的坐标.分析:由椭圆的方程化为标准方程,容易求出,,abc.引导学生用椭圆的长轴、短轴、离心率、焦点和顶点的定义即可求相关量.扩展:已知椭圆22550mxymm的离心率为105e,求m的值.解法剖析:依题意,0,5mm,但椭圆的焦点位置没有确定,应分类讨论:①当焦点在x轴上,即05m时,有5,,5abmcm,∴5255m,得3m;②当焦点在y轴上,即5m时,有,5,5ambcm,∴5102553mmm.例5,如图,一种电影放映灯的反射镜面是旋转椭圆面的一部分.过对对称的截口BAC是椭圆的一部分,灯丝位于椭圆的一个焦点1F上,片门位于另一个焦点2F上,由椭圆一个焦点1F发出的光线,经过旋转椭圆面反射后集中到另一个焦点2F.已知12BCFF,12.8FBcm,124.5FFcm.建立适当的坐标系,求截口BAC所在椭圆的方程.解法剖析:建立适当的直角坐标系,设椭圆的标准方程为22221xyab,算出,,abc的值;此题应注意两点:①注意建立直角坐标系的两个原则;②关于,,abc的近似值,原则上在没有注意精确度时,看题中其他量给定的有效数字来决定.引申:如图所示,“神舟”截人飞船发射升空,进入预定轨道开始巡天飞行,其轨道是以地球的中心2F为一个焦点的椭圆,近地点A距地面200km,远地点B距地面350km,已知地球的半径6371Rkm.建立适当的直角坐标系,求出椭圆的轨迹方程.例6如图,设,Mxy与定点4,0F的距离和它到直线l:254x的距离的比是常数45,求点M的轨迹方程.分析:若设点,Mxy,则224MFxy,到直线l:254x的距离254dx,则容易得点M的轨迹方程.引申:(用《几何画板》探究)若点,Mxy与定点,0Fc的距离和它到定直线l:2axc的距离比是常数cea0ac,则点M的轨迹方程是椭圆.其中定点,0Fc是焦点,定直线l:2axc相应于F的准线;由椭圆的对称性,另一焦点,0Fc,相应于F的准线l:2axc.抛物线及标准方程知识与技能目标使学生掌握抛物线的定义、抛物线的标准方程及其推导过程.要求学生进一步熟练掌握解析几何的基本思想方法,提高分析、对比、概括、转化等方面的能力.过程与方法目标情感,态度与价值观目标(1)培养学生用对称的美学思维来体现数学的和谐美。(2)培养学生观察,实验,探究与交流的数学活动能力。能力目标:(1)重视基础知识的教学、基本技能的训练和能力的培养;(2)启发学生能够发现问题和提出问题,善于独立思考,学会分析问题和创造地解决问题;(3)通过教师指导发现知识结论,培养学生抽象概括能力和逻辑思维能力(1)复习与引入过程回忆平面内与一个定点F的距离和一条定直线l的距离的比是常数e的轨迹,当0<e<1时是椭圆,当e>1时是双曲线,那么当e=1时,它又是什么曲线?2.简单实验如图2-29,把一根直尺固定在画图板内直线l的位置上,一块三角板的一条直角边紧靠直尺的边缘;把一条绳子的一端固定于三角板另一条直角边上的点A,截取绳子的长等于A到直线l的距离AC,并且把绳子另一端固定在图板上的一点F;用一支铅笔扣着绳子,紧靠着三角板的这条直角边把绳子绷紧,然后使三角板紧靠着直尺左右滑动,这样铅笔就描出一条曲线,这条曲线叫做抛物线.反复演示后,请同学们来归纳抛物线的定义,教师总结.(2)新课讲授过程(i)由上面的探究过程得出抛物线的定义《板书》平面内与一定点F和一条定直线l的距离相等的点的轨迹叫做抛物线(定点F不在定直线l上).定点F叫做抛物线的焦点,定直线l叫做抛物线的准线.(ii)抛物线标准方程的推导过程引导学生分析出:方案3中得出的方程作为抛物线的标准方程.这是因为这个方程不仅具有较简的形式,而方程中的系数有明确的几何意义:一次项系数是焦点到准线距离的2倍.由于焦点和准线在坐标系下的不同分布情况,抛物线的标准方程有四种情形(列表如下):将上表画在黑板上,并讲清为什么会出现四种不同的情形,四种情形中P>0;并指出图形的位置特征和方程的形式应结合起来记忆.即:当对称轴为x轴时,方程等号右端为±2px,相应地左端为y2;当对称轴为y轴时,方程等号的右端为±2py,相应地左端为x2.同时注意:当焦点在正半轴上时,取正号;当焦点在负半轴上时,取负号.(iii)例题讲解与引申例1已知抛物线的标准方程是y2=6x,求它的焦点坐标和准线方程已知抛物线的焦点是F(0,-2),求它的标准方程解因为p=3,所以抛物线的焦点坐标是(3/2,0)准线方程是x=-3/2因为抛物线的焦点在轴的负半轴上,且p/2=2,p=4,所以抛物线的标准方程是x2=-8y例2一种卫星接收天线的轴截面如图所示。卫星拨束近似平行状态社如轴截面为抛物线的接受天线,经反射聚焦到焦点处。已知接收天线的口径为4.8m深度为0.5m,求抛物线的标准方程和焦点坐标。解;设抛物线的标准方程是y2=2px(p0)。有已知条件可得,点A的坐标是(0.5,2.4)代入方程,得2.4=2p*0.5即=5.76所以,抛物线的标准方程是y2=11.52x,焦点坐标是(2.88,0)抛物线的几何性质知识与技能目标使学生理解并掌握抛物线的几何性质,并能从抛物线的标准方程出发,推导这些性质.从抛物线的标准方程出发,推导抛物线的性质,从而培养学生分析、归纳、推理等能力过程与方法目标复习与引入过程1.抛物线的定义是什么?请一同学回答.应为:“平面内与一个定点F和一条定直线l的距离相等的点的轨迹叫做抛物线.”2.抛物线的标准方程是什么?再请一同学回答.应为:抛物线的标准方程是y2=2px(p>0),y2=-2px(p>0),x2=2py(p>0)和x2=-2py(p>0).下面
本文标题:圆锥曲线教案课案
链接地址:https://www.777doc.com/doc-7674042 .html