您好,欢迎访问三七文档
圆周角定理圆周角定理:1.同弧或等弧所对圆周角等于它所对圆心角的一半。2.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径。3.如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做多边形的外接圆。中文名圆周角定理应用学科数学目录1圆周角▪定义▪性质2圆周角定理▪定义▪推论一:▪推论二:▪推论三:3证明1圆周角定义顶点在圆上,并且两边都与圆相交的角叫做圆周角圆周角图性质(1)一条弧所对的圆周角等于它所对的圆心角的一半;(2)圆周角的度数等于它所对的弧度数的一半;(3)在同圆或等圆中,同弧或等弧所对的圆周角相等;相等的圆周角所对的弧也相等。2圆周角定理定义圆周角定理:同弧或等弧所对圆周角等于它所对圆心角的一半。推论一:在同圆或等圆中,同弧或等弧所对的圆周角相等。推论二:半圆(直径)所对的圆周角是直角。推论三:90°的圆周角所对的弦是直径。注意:在圆中,同一条弦所对的圆周角有两个,一个是优弧所对的角,一个是劣弧所对的角。3证明已知在⊙O中,∠BOC与圆周角∠BAC同对弧BC,求证:2∠BOC=∠BAC.证明:情况1:如图1,当圆心O在∠BAC的一边上时,即A、O、B在同一直线上时:图1∵OA、OC是半径解:∴OA=OC∴∠BAC=∠ACO(等边对等角)∵∠BOC是△AOC的外角∴∠BOC=∠BAC+∠ACO=2∠BAC情况2:如图2,,当圆心O在∠BAC的内部时:连接AO,并延长AO交⊙O于D图2∵OA、OB、OC是半径解:∴OA=OB=OC∴∠BAD=∠ABO,∠CAD=∠ACO(等边对等角)∵∠BOD、∠COD分别是△AOB、△AOC的外角∴∠BOD=∠BAD+∠ABO=2∠BAD∠COD=∠CAD+∠ACO=2∠CAD∴∠BOC=∠BOD+∠COD=2(∠BAD+∠CAD)=2∠BAC情况3:如图3,当圆心O在∠BAC的外部时:图3连接AO,并延长AO交⊙O于D解:∵OA、OB、OC、是半径∴∠BAD=∠ABO(等边对等角),∠CAD=∠ACO(OA=OC)∵∠DOB、∠DOC分别是△AOB、△AOC的外角∴∠DOB=∠BAD+∠ABO=2∠BAD∠DOC=∠CAD+∠ACO=2∠CAD∴∠BOC=∠DOC-∠DOB=2(∠CAD-∠BAD)=2∠BAC
本文标题:圆周角定理
链接地址:https://www.777doc.com/doc-7704267 .html