您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 招聘面试 > 2010年高考数学试题分类汇编--排列组合与二项式定理
2010年高考数学试题分类汇编——排列组合与二项式定理(2010全国卷2理数)(6)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有(A)12种(B)18种(C)36种(D)54种【答案】B【命题意图】本试题主要考察排列组合知识,考察考生分析问题的能力.【解析】标号1,2的卡片放入同一封信有种方法;其他四封信放入两个信封,每个信封两个有种方法,共有种,故选B.(2010全国卷2文数)(9)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有(A)12种(B)18种(C)36种(D)54种【解析】B:本题考查了排列组合的知识∵先从3个信封中选一个放1,2有3种不同的选法,再从剩下的4个数中选两个放一个信封有246C,余下放入最后一个信封,∴共有24318C(2010江西理数)6.82x展开式中不含..4x项的系数的和为()A.-1B.0C.1D.2【答案】B【解析】考查对二项式定理和二项展开式的性质,重点考查实践意识和创新能力,体现正难则反。采用赋值法,令x=1得:系数和为1,减去4x项系数80882(1)1C即为所求,答案为0.(2010重庆文数)(10)某单位拟安排6位员工在今年6月14日至16日(端午节假期)值班,每天安排2人,每人值班1天.若6位员工中的甲不值14日,乙不值16日,则不同的安排方法共有[来源:Z。xx(A)30种(B)36种(C)42种(D)48种解析:法一:所有排法减去甲值14日或乙值16日,再加上甲值14日且乙值16日的排法即2212116454432CCCCCC=42法二:分两类甲、乙同组,则只能排在15日,有24C=6种排法甲、乙不同组,有112432(1)CCA=36种排法,故共有42种方法(2010重庆文数)(1)4(1)x的展开式中2x的系数为(A)4(B)6(C)10(D)20解析:由通项公式得2234TC6xx(2010重庆理数)(9)某单位安排7位员工在10月1日至7日值班,每天1人,每人值班1天,若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有A.504种B.960种C.1008种D.1108种解析:分两类:甲乙排1、2号或6、7号共有4414222AAA种方法甲乙排中间,丙排7号或不排7号,共有)(43313134422AAAAA种方法故共有1008种不同的排法(2010北京理数)(4)8名学生和2位第师站成一排合影,2位老师不相邻的排法种数为(A)8289AA(B)8289AC(C)8287AA(D)8287AC答案:A(2010四川理数)(10)由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是(A)72(B)96(C)108(D)144解析:先选一个偶数字排个位,有3种选法①若5在十位或十万位,则1、3有三个位置可排,32232AA=24个②若5排在百位、千位或万位,则1、3只有两个位置可排,共32222AA=12个算上个位偶数字的排法,共计3(24+12)=108个答案:C(2010天津理数)(10)如图,用四种不同颜色给图中的A,B,C,D,E,F六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法用(A)288种(B)264种(C)240种(D)168种【答案】D【解析】本题主要考查排列组合的基础知识与分类讨论思想,属于难题。(1)B,D,E,F用四种颜色,则有441124A种涂色方法;(2)B,D,E,F用三种颜色,则有334422212192AA种涂色方法;(3)B,D,E,F用两种颜色,则有242248A种涂色方法;所以共有24+192+48=264种不同的涂色方法。【温馨提示】近两年天津卷中的排列、组合问题均处理压轴题的位置,且均考查了分类讨论思想及排列、组合的基本方法,要加强分类讨论思想的训练。(2010天津理数)(4)阅读右边的程序框图,若输出s的值为-7,则判断框内可填写(A)i<3?(B)i<4?(C)i<5?(D)i<6?【答案】D【解析】本题主要考查条件语句与循环语句的基本应用,属于容易题。第一次执行循环体时S=1,i=3;第二次执行循环时s=-2,i=5;第三次执行循环体时s=-7.i=7,所以判断框内可填写“i6?”,选D.【温馨提示】设计循环语句的问题通常可以采用一次执行循环体的方式解决。(2010福建文数)(2010全国卷1文数)(5)43(1)(1)xx的展开式2x的系数是(A)-6(B)-3(C)0(D)35.A.【命题意图】本小题主要考查了考生对二项式定理的掌握情况,尤其是展开式的通项公式的灵活应用,以及能否区分展开式中项的系数与其二项式系数,同时也考查了考生的一些基本运算能力.【解析】134323422(1)(1)1464133xxxxxxxxx2x的系数是-12+6=-6(2010全国卷1理数)(6)某校开设A类选修课3门,B类选择课4门,一位同学从中共选3门.若要求两类课程中各至少选一门,则不同的选法共有(A)30种(B)35种(C)42种(D)48种(2010全国卷1理数)(5)353(12)(1)xx的展开式中x的系数是(A)-4(B)-2(C)2(D)4(2010四川文数)(9)由1、2、3、4、5组成没有重复数字且1、2都不与5相邻的五位数的个数是(A)36(B)32(C)28(D)24解析:如果5在两端,则1、2有三个位置可选,排法为2×2232AA=24种如果5不在两端,则1、2只有两个位置可选,3×2222AA=12种共计12+24=36种答案:A(2010湖北文数)6.现有名同学支听同时进行的个课外知识讲座,名每同学可自由选择其中的一个讲座,不同选法的种数是A.45B.56C.5654322D.65432(2010湖南理数)7、在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为A.10B.11C.12D.15(2010湖北理数)8、现安排甲、乙、丙、丁、戌5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加。甲、乙不会开车但能从事其他三项工作,丙丁戌都能胜任四项工作,则不同安排方案的种数是A.152B.126C.90D.548.【答案】B【解析】分类讨论:若有2人从事司机工作,则方案有233318CA;若有1人从事司机工作,则方案有123343108CCA种,所以共有18+108=126种,故B正确
本文标题:2010年高考数学试题分类汇编--排列组合与二项式定理
链接地址:https://www.777doc.com/doc-7704555 .html