您好,欢迎访问三七文档
Gothedistance学案50直线、圆的位置关系导学目标:1.能根据给定直线、圆的方程,判断直线与圆、圆与圆的位置关系.2.能用直线和圆的方程解决一些简单的问题.3.在学习过程中,体会用代数方法处理几何问题的思想.自主梳理1.直线与圆的位置关系位置关系有三种:________、________、________.判断直线与圆的位置关系常见的有两种方法:(1)代数法:利用判别式Δ,即直线方程与圆的方程联立方程组消去x或y整理成一元二次方程后,计算判别式Δ(2)几何法:利用圆心到直线的距离d和圆半径r的大小关系:dr⇔________,d=r⇔________,dr⇔________.2.圆的切线方程若圆的方程为x2+y2=r2,点P(x0,y0)在圆上,则过P点且与圆x2+y2=r2相切的切线方程为____________________________.注:点P必须在圆x2+y2=r2上.经过圆(x-a)2+(y-b)2=r2上点P(x0,y0)的切线方程为________________________.3.计算直线被圆截得的弦长的常用方法(1)几何方法运用弦心距(即圆心到直线的距离)、弦长的一半及半径构成直角三角形计算.(2)代数方法运用韦达定理及弦长公式|AB|=1+k2|xA-xB|=1+k2[xA+xB2-4xAxB].说明:圆的弦长、弦心距的计算常用几何方法.4.圆与圆的位置关系(1)圆与圆的位置关系可分为五种:________、________、________、________、________.判断圆与圆的位置关系常用方法:(几何法)设两圆圆心分别为O1、O2,半径为r1、r2(r1≠r2),则|O1O2|r1+r2________;|O1O2|=r1+r2______;|r1-r2||O1O2|r1+r2________;|O1O2|=|r1-r2|________;0≤|O1O2||r1-r2.(2)已知两圆x2+y2+D1x+E1y+F1=0和x2+y2+D2x+E2y+F2=0相交,则与两圆共交点的圆系方程为________________________________________________________________,其中λ为λ≠-1的任意常数,因此圆系不包括第二个圆.当λ=-1时,为两圆公共弦所在的直线,方程为(D1-D2)x+(E1-E2)y+(F1-F2)=0.自我检测1.(2010·江西)直线y=kx+3与圆(x-3)2+(y-2)2=4相交于M,N两点,若|MN|≥23,则k的取值范围是()A.-34,0GothedistanceB.-∞,-34∪[)0,+∞C.-33,33D.-23,02.圆x2+y2-4x=0在点P(1,3)处的切线方程为()A.x+3y-2=0B.x+3y-4=0C.x-3y+4=0D.x-3y+2=03.(2011·宁夏调研)圆C1:x2+y2+2x+2y-2=0与圆C2:x2+y2-4x-2y+1=0的公切线有且仅有()A.1条B.2条C.3条D.4条4.过点(0,1)的直线与x2+y2=4相交于A、B两点,则|AB|的最小值为()A.2B.23C.3D.255.(2011·聊城月考)直线y=x+1与圆x2+y2=1的位置关系是()A.相切B.相交但直线不过圆心C.直线过圆心D.相离探究点一直线与圆的位置关系例1已知圆C:x2+y2+2x-4y+3=0.(1)若圆C的切线在x轴和y轴上的截距相等,求此切线的方程;(2)从圆C外一点P(x1,y1)向该圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求使得|PM|取得最小值时点P的坐标.变式迁移1从圆C:(x-1)2+(y-1)2=1外一点P(2,3)向该圆引切线,求切线的方程及过两切点的直线方程.探究点二圆的弦长、中点弦问题例2(2011·汉沽模拟)已知点P(0,5)及圆C:x2+y2+4x-12y+24=0.Gothedistance(1)若直线l过点P且被圆C截得的线段长为43,求l的方程;(2)求过P点的圆C的弦的中点的轨迹方程.变式迁移2已知圆C:x2+y2-6x-8y+21=0和直线kx-y-4k+3=0.(1)证明:不论k取何值,直线和圆总有两个不同交点;(2)求当k取什么值时,直线被圆截得的弦最短,并求这条最短弦的长.探究点三圆与圆的位置关系例3已知圆C1:x2+y2-2mx+4y+m2-5=0,圆C2:x2+y2+2x-2my+m2-3=0,m为何值时,(1)圆C1与圆C2相外切;(2)圆C1与圆C2内含.变式迁移3已知⊙A:x2+y2+2x+2y-2=0,⊙B:x2+y2-2ax-2by+a2-1=0.当a,b变化时,若⊙B始终平分⊙A的周长,求:(1)⊙B的圆心B的轨迹方程;(2)⊙B的半径最小时圆的方程.Gothedistance探究点四综合应用例4已知圆C:x2+y2-2x+4y-4=0.问在圆C上是否存在两点A、B关于直线y=kx-1对称,且以AB为直径的圆经过原点?若存在,写出直线AB的方程;若不存在,说明理由.变式迁移4已知过点A(0,1)且斜率为k的直线l与圆C:(x-2)2+(y-3)2=1相交于M、N两点.(1)求实数k的取值范围;(2)若O为坐标原点,且OM→·ON→=12,求k的值.1.求切线方程时,若知道切点,可直接利用公式;若过圆外一点求切线,一般运用圆心到直线的距离等于半径来求,但注意有两条.2.解决与弦长有关的问题时,注意运用由半径、弦心距、弦长的一半构成的直角三角形,也可以运用弦长公式.这就是通常所说的“几何法”和“代数法”.3.判断两圆的位置关系,从圆心距和两圆半径的关系入手.(满分:75分)Gothedistance一、选择题(每小题5分,共25分)1.直线l:y-1=k(x-1)和圆x2+y2-2y=0的位置关系是()A.相离B.相切或相交C.相交D.相切2.(2011·珠海模拟)直线3x-y+m=0与圆x2+y2-2x-2=0相切,则实数m等于()A.3或-3B.-3或33C.-33或3D.-33或333.过原点且倾斜角为60°的直线被圆x2+y2-4y=0所截得的弦长为()A.3B.2C.6D.234.若圆(x-3)2+(y+5)2=r2上有且仅有两个点到直线4x-3y-2=0的距离为1,则半径r的取值范围是()A.(4,6)B.[4,6)C.(4,6]D.[4,6]5.(2010·全国Ⅰ)已知圆O的半径为1,PA、PB为该圆的两条切线,A、B为两切点,那么PA→·PB→的最小值为()A.-4+2B.-3+2C.-4+22D.-3+22二、填空题(每小题4分,共12分)6.若圆x2+y2=4与圆x2+y2+2ay-6=0(a0)的公共弦的长为23,则a=________.7.(2011·三明模拟)已知点A是圆C:x2+y2+ax+4y-5=0上任意一点,A点关于直线x+2y-1=0的对称点也在圆C上,则实数a=________.8.(2011·杭州高三调研)设直线3x+4y-5=0与圆C1:x2+y2=4交于A,B两点,若圆C2的圆心在线段AB上,且圆C2与圆C1相切,切点在圆C1的劣弧AB上,则圆C2的半径的最大值是________.三、解答题(共38分)9.(12分)圆x2+y2=8内一点P(-1,2),过点P的直线l的倾斜角为α,直线l交圆于A、B两点.(1)当α=3π4时,求AB的长;(2)当弦AB被点P平分时,求直线l的方程.10.(12分)(2011·湛江模拟)自点A(-3,3)发出的光线l射到x轴上,被x轴反射,其反射光线所在直线与圆x2+y2-4x-4y+7=0相切,求光线l所在直线的方程.11.(14分)已知两圆x2+y2-2x-6y-1=0和x2+y2-10x-12y+m=0.求:(1)m取何值时两圆外切?Gothedistance(2)m取何值时两圆内切?(3)m=45时两圆的公共弦所在直线的方程和公共弦的长.学案50直线、圆的位置关系自主梳理1.相切相交相离(1)相交相切相离(2)相交相切相离2.x0x+y0y=r2(x0-a)(x-a)+(y0-b)(y-b)=r24.(1)相离外切相交内切内含相离外切相交内切内含(2)(x2+y2+D1x+E1y+F1)+λ(x2+y2+D2x+E2y+F2)=0自我检测1.A2.D3.B4.B5.B课堂活动区例1解题导引(1)过点P作圆的切线有三种类型:当P在圆外时,有2条切线;当P在圆上时,有1条切线;当P在圆内时,不存在.(2)利用待定系数法设圆的切线方程时,一定要注意直线方程的存在性,有时要进行恰当分类.(3)切线长的求法:过圆C外一点P作圆C的切线,切点为M,半径为R,则|PM|=|PC|2-R2.解(1)将圆C配方得(x+1)2+(y-2)2=2.①当直线在两坐标轴上的截距为零时,设直线方程为y=kx,由|k+2|1+k2=2,解得k=2±6,得y=(2±6)x.②当直线在两坐标轴上的截距不为零时,设直线方程为x+y-a=0,由|-1+2-a|2=2,得|a-1|=2,即a=-1,或a=3.∴直线方程为x+y+1=0,或x+y-3=0.综上,圆的切线方程为y=(2+6)x,或y=(2-6)x,或x+y+1=0,或x+y-3=0.(2)由|PO|=|PM|,得x21+y21=(x1+1)2+(y1-2)2-2,整理得2x1-4y1+3=0.即点P在直线l:2x-4y+3=0上.当|PM|取最小值时,即OP取得最小值,直线OP⊥l,∴直线OP的方程为2x+y=0.Gothedistance解方程组2x+y=0,2x-4y+3=0,得点P的坐标为-310,35.变式迁移1解设圆切线方程为y-3=k(x-2),即kx-y+3-2k=0,∴1=|k+2-2k|k2+1,∴k=34,另一条斜率不存在,方程为x=2.∴切线方程为x=2和3x-4y+6=0.圆心C为(1,1),∴kPC=3-12-1=2,∴过两切点的直线斜率为-12,又x=2与圆交于(2,1),∴过切点的直线为x+2y-4=0.例2解题导引(1)有关圆的弦长的求法:已知直线的斜率为k,直线与圆C相交于A(x1,y1),B(x2,y2)两点,点C到l的距离为d,圆的半径为r.方法一代数法:弦长|AB|=1+k2|x2-x1|=1+k2·x1+x22-4x1x2;方法二几何法:弦长|AB|=2r2-d2.(2)有关弦的中点问题:圆心与弦的中点连线和已知直线垂直,利用这条性质可确定某些等量关系.解(1)方法一如图所示,|AB|=43,取AB的中点D,连接CD,则CD⊥AB,连接AC、BC,则|AD|=23,|AC|=4,在Rt△ACD中,可得|CD|=2.当直线l的斜率存在时,设所求直线的斜率为k,则直线的方程为y-5=kx,即kx-y+5=0.由点C到直线AB的距离公式,得|-2k-6+5|k2+-12=2,解得k=34.当k=34时,直线l的方程为3x-4y+20=0.又直线l的斜率不存在时,也满足题意,此时方程为x=0.∴所求直线的方程为3x-4y+20=0或x=0.方法二当直线l的斜率存在时,设所求直线的斜率为k,则直线的方程为y-5=kx,即y=kx+5.联立直线与圆的方程y=kx+5,x2+y2+4x-12y+24=0,消去y,得(1+k2)x2+(4-2k)x-11=0.①设方程①的两根为x1,x2,Gothedistance由根与系数的关系,得x1+x2=2k-41+k2,x1x2=-111+k2.②由弦长公式,得1+k2|x1-x2|=1+k2[x1+x22-4x1x2]=43.将②式代入,解得k=34,此时直线方程为3x-4y+20=0.又k不存在时也满足题意,此时直线方程为x=0.∴所求直线的方程为x=0或3x-4y+20=0.(2)设过P点的圆C的弦的中点
本文标题:直线与圆的位置关系
链接地址:https://www.777doc.com/doc-7731709 .html