您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > (14)年中考数学卷(含答案) (2)
12014年浙江省舟山市中考数学试卷一、选择题(本题有10小题,每小题3分,共30分.请选出各题中唯一的正确选项,不选多选、错选,均不得分)1.(3分)(2014年浙江舟山)﹣3的绝对值是()A.﹣3B.3C.D.考点:绝对值.菁优网版权所有专题:计算题.分析:计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.解答:解:|﹣3|=3.故﹣3的绝对值是3.故选B.点评:考查了绝对值的定义,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)(2014年浙江舟山)一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9,这5个数据的中位数是()A.6B.7C.8D.9考点:中位数.菁优网版权所有分析:根据中位数的概念求解.解答:解:这组数据按照从小到大的顺序排列为:6,7,8,9,9,则中位数为:8.故选C.点评:本题考查了中位数的知识:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.3.(3分)(2014年浙江舟山)2013年12月15日,我国“玉兔号”月球车顺利抵达月球表面,月球离地球平均距离是384400000米,数据384400000用科学记数法表示为()A.3.844×108B.3.844×107C.3.844×109D.38.44×109考点:科学记数法—表示较大的数.菁优网版权所有分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于384400000有9位,所以可以确定n=9﹣1=8.解答:解:384400000=3.844×108.故选A.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.24.(3分)(2014年浙江舟山)小红同学将自己5月份的各项消费情况制作成扇形统计图(如图),从图中可看出()A.各项消费金额占消费总金额的百分比B.各项消费的金额C.消费的总金额D.各项消费金额的增减变化情况考点:扇形统计图.菁优网版权所有分析:利用扇形统计图的特点结合各选项利用排除法确定答案即可.解答:解:A、能够看出各项消费占总消费额的百分比,故选项正确;B、不能确定各项的消费金额,故选项错误;C、不能看出消费的总金额,故选项错误;D、不能看出增减情况,故选项错误.故选A.点评:本题考查了扇形统计图的知识,扇形统计图能清楚的反应各部分所占的百分比,难度较小.5.(3分)(2014年浙江舟山)如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则AB的长为()A.2B.4C.6D.8考点:垂径定理;勾股定理.菁优网版权所有分析:根据CE=2,DE=8,得出半径为5,在直角三角形OBE中,由勾股定理得BE,根据垂径定理得出AB的长.解答:解:∵CE=2,DE=8,∴OB=5,3∴OE=3,∵AB⊥CD,∴在△OBE中,得BE=4,∴AB=2BE=8,故选D.点评:本题考查了勾股定理以及垂径定理,是基础知识要熟练掌握.6.(3分)(2014年浙江舟山)下列运算正确的是()A.2a2+a=3a3B.(﹣a)2÷a=aC.(﹣a)3•a2=﹣a6D.(2a2)3=6a6考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.菁优网版权所有专题:计算题.分析:A、原式不能合并,错误;B、原式先计算乘方运算,再计算除法运算即可得到结果;C、原式利用幂的乘方及积的乘方运算法则计算得到结果,即可做出判断;D、原式利用幂的乘方及积的乘方运算法则计算得到结果,即可做出判断.解答:解:A、原式不能合并,故选项错误;B、原式=a2÷a=a,故选项正确;C、原式=﹣a3•a2=﹣a5,故选项错误;D、原式=8a6,故选项错误.故选B.点评:此题考查了同底数幂的乘除法,合并同类项,以及完全平方公式,熟练掌握公式及法则是解本题的关键.7.(3分)(2014年浙江舟山)如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD的周长为()A.16cmB.18cmC.20cmD.22cm考点:平移的性质.菁优网版权所有分析:根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=2+AB+BC+2+AC即可得出答案.解答:解:根据题意,将周长为16cm的△ABC沿BC向右平移2cm得到△DEF,∴AD=2cm,BF=BC+CF=BC+2cm,DF=AC;又∵AB+BC+AC=16cm,∴四边形ABFD的周长=AD+AB+BF+DF=2+AB+BC+2+AC=20cm.故选C.4点评:本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.得到CF=AD,DF=AC是解题的关键.8.(3分)(2014年浙江舟山)一个圆锥的侧面展开图是半径为6的半圆,则这个圆锥的底面半径为()A.1.5B.2C.2.5D.3考点:圆锥的计算.菁优网版权所有分析:半径为6的半圆的弧长是6π,圆锥的底面周长等于侧面展开图的扇形弧长,因而圆锥的底面周长是6π,然后利用弧长公式计算.解答:解:设圆锥的底面半径是r,则得到2πr=6π,解得:r=3,这个圆锥的底面半径是3.故选D.点评:本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.9.(3分)(2014年浙江舟山)如图,在一张矩形纸片ABCD中,AD=4cm,点E,F分别是CD和AB的中点,现将这张纸片折叠,使点B落在EF上的点G处,折痕为AH,若HG延长线恰好经过点D,则CD的长为()A.2cmB.2cmC.4cmD.4cm考点:翻折变换(折叠问题).菁优网版权所有分析:先证明EG是△DCH的中位线,继而得出DG=HG,然后证明△ADG≌△AHG,得出∠BAH=∠HAG=∠DAG=30°,在Rt△ABH中,可求出AB,也即是CD的长.解答:解:∵点E,F分别是CD和AB的中点,∴EF⊥AB,∴EF∥BC,∴EG是△DCH的中位线,∴DG=HG,由折叠的性质可得:∠AGH=∠ABH=90°,5∴∠AGH=∠AGD=90°,在△AGH和△AGD中,,∴△ADG≌△AHG(SAS),∴AD=AH,∠DAG=∠HAG,由折叠的性质可得:∠BAH=∠HAG,∴∠BAH=∠HAG=∠DAG=∠BAD=30°,在Rt△ABH中,AH=AD=4,∠BAH=30°,∴HB=2,AB=2,∴CD=AB=2.故选B.点评:本题考查了翻折变换、三角形的中位线定理,解答本题的关键是判断出∠BAH=∠HAG=∠DAG=30°,注意熟练掌握翻折变换的性质.10.(3分)(2014年浙江舟山)当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为()A.﹣B.或C.2或D.2或﹣或考点:二次函数的最值.菁优网版权所有专题:分类讨论.分析:根据对称轴的位置,分三种情况讨论求解即可.解答:解:二次函数的对称轴为直线x=m,①m<﹣2时,x=﹣2时二次函数有最大值,此时﹣(﹣2﹣m)2+m2+1=4,解得m=﹣,与m<﹣2矛盾,故m值不存在;②当﹣2≤m≤1时,x=m时,二次函数有最大值,此时,m2+1=4,解得m=﹣,m=(舍去);③当m>1时,x=1时,二次函数有最大值,此时,﹣(1﹣m)2+m2+1=4,解得m=2,综上所述,m的值为2或﹣.故选C.点评:本题考查了二次函数的最值问题,难点在于分情况讨论.二、填空题(本题有6小题,每小题4分,共24分)11.(4分)(2014年浙江舟山)方程x2﹣3x=0的根为0或3.6考点:解一元二次方程-因式分解法.菁优网版权所有分析:根据所给方程的系数特点,可以对左边的多项式提取公因式,进行因式分解,然后解得原方程的解.解答:解:因式分解得,x(x﹣3)=0,解得,x1=0,x2=3.点评:本题考查了解一元二次方程的方法,当方程的左边能因式分解时,一般情况下是把左边的式子因式分解,再利用积为0的特点解出方程的根.因式分解法是解一元二次方程的一种简便方法,要会灵活运用.12.(4分)(2014年浙江舟山)如图,在地面上的点A处测得树顶B的仰角为α度,AC=7米,则树高BC为7tanα米(用含α的代数式表示).考点:解直角三角形的应用-仰角俯角问题.菁优网版权所有分析:根据题意可知BC⊥AC,在Rt△ABC中,AC=7米,∠BAC=α,利用三角函数即可求出BC的高度.解答:解:∵BC⊥AC,AC=7米,∠BAC=α,∴=tanα,∴BC=AC•tanα=7tanα(米).故答案为:7tanα.点评:本题考查了解直角三角形的应用,关键是根据仰角构造直角三角形,利用三角函数求解.13.(4分)(2014年浙江舟山)有三辆车按1,2,3编号,舟舟和嘉嘉两人可任意选坐一辆车.则两人同坐3号车的概率为.考点:列表法与树状图法.菁优网版权所有分析:根据题意画出树状图,得出所有的可能,进而求出两人同坐3号车的概率.解答:解:由题意可画出树状图:,所有的可能有9种,两人同坐3号车的概率为:.7故答案为:.点评:此题主要考查了树状图法求概率,列举出所有可能是解题关键.14.(4分)(2014年浙江舟山)如图,在△ABC中,AB=2,AC=4,将△ABC绕点C按逆时针方向旋转得到△A′B′C,使CB′∥AB,分别延长AB,CA′相交于点D,则线段BD的长为6.考点:旋转的性质;相似三角形的判定与性质.菁优网版权所有分析:利用平行线的性质以及旋转的性质得出△CAD∽△B′A′C,再利用相似三角形的性质得出AD的长,进而得出BD的长.解答:解:∵将△ABC绕点C按逆时针方向旋转得到△A′B′C,∴AC=CA′=4,AB=B′A′=2,∠A=∠CA′B′,∵CB′∥AB,∴∠B′CA′=∠D,∴△CAD∽△B′A′C,∴=,∴=,解得AD=8,∴BD=AD﹣AB=8﹣2=6.故答案为:6.点评:此题主要考查了旋转的性质以及相似三角形的判定与性质等知识,得出△CAD∽△B′A′C是解题关键.15.(4分)(2014年浙江舟山)过点(﹣1,7)的一条直线与x轴,y轴分别相交于点A,B,且与直线平行.则在线段AB上,横、纵坐标都是整数的点的坐标是(1,4),(3,1).考点:两条直线相交或平行问题.菁优网版权所有分析:依据与直线平行设出直线AB的解析式y=﹣x+b;代入点(﹣1,7)即可求得b,然后求出与x轴的交点横坐标,列举才符合条件的x的取值,依次代入即可.解答:解:∵过点(﹣1,7)的一条直线与直线平行,设直线AB为y=﹣x+b;8把(﹣1,7)代入y=﹣x+b;得7=+b,解得:b=,∴直线AB的解析式为y=﹣x+,令y=0,得:0=﹣x+,解得:x=,∴0<x<的整数为:1、2、3;把x等于1、2、3分别代入解析式得4、、1;∴在线段AB上,横、纵坐标都是整数的点的坐标是(1,4),(3,1).故答案为(1,4),(3,1).点评:本题考查了待定系数法求解析式以及直线上点的情况,列举出符合条件的x的值是本题的关键.16.(4分)(2014年浙江舟山)如图,点C在以AB为直径的半圆上,AB=8,∠CBA=30°,点D在线段AB上运动,点E与点D关于AC对称,DF⊥DE于点D,并交EC的延长线于点F.下列结论:①CE=CF;②线段EF的最小值为2;③当AD=2时,EF与半圆相切;④若点F恰好落在上,则AD=2;⑤当点D从点A运动到点B时,线段EF扫过的面积是16.其中正确结论的序号是①③⑤.考点:圆的综合题;垂线段最短;平行线的判定与性质;等边三角形的判定与性质;含30度角的直角三角形;切线的判定;轴对称的
本文标题:(14)年中考数学卷(含答案) (2)
链接地址:https://www.777doc.com/doc-7754746 .html