您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 八年级数学(上)浙教版:一元一次不等式知识要点、典型例题、习题讲解
-1-浙教版《一元一次不等式》知识要点及典型例题、习题讲解一、知识点要求1、理解不等式的概念和基本性质、一元一次不等式的概念、不等式的解集(不等式的解)2、会解一元一次不等式,并能在数轴上表示不等式的解集;熟练掌握解一元一次不等式的一般步骤和根据;掌握一元一次不等式的应用题的解法3、理解一元一次不等式组的概念,及不等式组的解的概念(组成不等式组的各个不等式的解的公共部分);会解一元一次不等式组,并能在数轴上表示不等式组的解,进一步得出不等式组解的规律:①同大取大,②同小取小,③比大得小,比小得大取中间,④比大得大,比小得小,不等式组无实数解;掌握一元一次不等式组的应用题。二、重要的数学思想:1、通过将实际生活问题转化成不等式等数学模型,领会转化的数学思想。2、通过在数轴上表示一元一次不等式的解集与运用数轴确定一元一次不等式组的解集,进一步领会数形结合的思想。3、类比思想:把两个(或两类)不同的数学对象进行比较,如果发现它们在某些方面有相同或类似之处,那么就推断它们在其他方面也可能有相同或类似之处。这种数学思想通常称为“类比”,它体现了“不同事物之间存在内部联系”的唯物辩证观点,是发现数学真理和解题方法的重要手段之一,在数学中有着广泛的运用。在本章中,类比思想的突出运用有:1、不等式与等式的性质类比。2、不等式的解与方程的解的类比3、不等式解法与方程的解法类比。注意:解一元一次不等式与解一元一次方程的步骤虽然完全相同,但是要注意如果乘数或除数是负数时,解不等式时要改变不等号的方向。典型例题一、解不等式的通法与技巧解一元一次不等式的五个基本步骤和根据如下:步骤根据12去括号单项式乘多项式法则34合并同类项,得axb,或axb(a≠0)合并同类项法则-2-5同学们在熟练掌握一元一次不等式解法的五个步骤后,可结合一元一次不等式的特点,采取一些灵活、简捷的方法与技巧,能使解题事半功倍。(一)、凑整法例1.解不等式。分析:根据不等式性质,两边同乘以适当的数,将小数转化为整系数。解:两边同乘以-4,得x+30-2-x.∴x-16.(二)、化分母为整数例2.解不等式。分析:根据分数基本性质,将两边分母化成整数。解:原不等式变形,得8x-3-(25x-4)15-10x.∴-7x14.即x-2.(三)、裂项法例3.解不等式。分析:本题若采用去分母法,步骤较多,由除法意义,裂项相合并,过程简洁。解:原不等式变形,得。移项、合并,得。(四)、整体处理法例4.解不等式。解:视“3x-2”为一个整体,变形,得,移项合并,将,∴。二、单纯解不等式组1、165()7510542352xxxxx2、13214)2(3xxxx-3-3、2(3)4(1)22xxxxx4、165()7510542352xxxxx5、若cxbxaxxcba的不等式组则关于,的解集是()A、axbB、axcC、bxcD、无解6、若a2a,则a的取值范围是____________;解:(1)∵a2a,∴a2-a0,即a(a-1)0,∴或解得a1或a0。三、带有附加条件的不等式(组)的解例1、求不等式(3x+4)-3≤7的最大整数解。分析:此题是带有附加条件的不等式,这时应先求不等式的解集,再在解集中,找出满足附加条件的解。解:(3x+4)-3≤7去分母:3x+4-6≤14移项:3x≤14-4+6合并同类项:3x≤16系数化为1:x≤5∴x≤5的最大整数解为x=5例2、x取哪些非负整数时,代数式3-的值不小于代数式的值?解:依题意得:3-≥去分母:24-2(x-1)≥3(x+2)去括号:24-2x+2≥3x+6合并同类项:-5x≥-20系数化为1:x≤4∴符合条件的非负整数为x=0,1,2,3,4.答:当x取0,1,2,3,4时,代数式3-的值不小于代数式的值。-4-(很多人会一不小心就把0弄丢了)注意:要明确“大于”、“小于”、“不大于”、“不小于”、“不超过”、“至多”、“至少”、“非负数”、“正数”、“负数”、“负整数”……这些描述不等关系的语言所对应的不等号各是什么。求带有附加条件的不等式时需要先求这个不等式的所有的解,即这个不等式的解集,然后再从中筛选出符合要求的解。四、不等式(组)中待定字母的取值范围例1、当k取何值时,方程x-2k=3(x-k)+1的解为负数。分析:应先解关于x的字母系数方程,即找到x的表达式,再解带有附加条件的不等式。解:解关于x的方程:x-2k=3(x-k)+1去分母:x-4k=6(x-k)+2去括号:x-4k=6x-6k+2移项:x-6x=-6k+2+4k合并同类项:-5x=2-2k系数化为1:x==.要使x为负数,即x=0,∵分母0,∴2k-20,∴k1,∴当k1时,方程x-2k=3(x-k)+1的解是负数。例2、若|3x-6|+(2x-y-m)2=0,求m为何值时y为正数。分析:目前我们学习过的两个非负数问题,一个是绝对值为非负数,另一个是完全平方数是非负数。由非负数的概念可知,两个非负数的和等于0,则这两个非负数只能为零。由这个性质此题可转化为方程组来解。由此求出y的表达式再解关于m的不等式。解:∵|3x-6|+(2x-y-m)2=0,∴∴解方程组得要使y为正数,即4-m0,∴m4.∴当m4时,y为正数。例3、若关于x的方程组134123pyxpyx的解满足xy,则p的取值范围是_________.-5-例4、如果不等式组nxxx737的解集是x>7,则n的取值范围是()A、n≥7B、n≤7C、n=7D、n<7例5、如果关于x的不等式(2a-b)x+a-5b0的解集为x107,求关于x的不等式axb的解集。分析:由不等式(2a-b)x+a-5b0的解集为x107,观察到不等号的方向已作了改变,故可知(2a-b)0,且51027baab,解此方程可求出a,b的关系。解:由不等式(2a-b)x+a-5b0的解集为x107,可知:2a-b0,且51027baab,得b=35a。结合2a-b0,b=35a,可知b0,a0。则axb的解集为x35。例6、已知关于x的不等式组1x230ax的整数解共有5个,则a的取值范围是_____________。解析:由原不等式组可得2xax,因为它有解,所以解集是2xa,此解集中的5个整数解依次为1、0、1、2、3,故它的解集在数轴上表示出来如图1所示,于是可知a的取值范围为3a4。图1(同类模仿)已知关于x的不等式组0521xax≥,只有四个整数解,则实数a的取值范围是____(32a≤)(同类模仿)已知不等式4x-a≤0,只有四个正整数解1,2,3,4,那么正数a的取值范围是什么?根据题意画出直观图示如下:因为不等式只有四个正整数解1,2,3,4,设若4a在4的左侧,则不等式的正整数解只能是1,2,3,不包含4;若4a在5的右侧或与5重合,则不等式的正整数解应当是1,2,3,4,5,与题设不符。所以4a可在4和5之间移动,能与4重合,但不能与5重合。因此有4≤4a5,故16≤a20。五、不等式与不等式组的应用题用一元一次不等式组解决实际问题的步骤:-6-⑴审题,找出不等关系;⑵设未知数;⑶列出不等式;⑷求出不等式的解集;⑸找出符合题意的值;⑹作答。例1、某校为落实市教育局提出的“全员育人,创办特色学校”的会议精神,决定举办“读书节”活动,在这次读书活动中,小明受到老师的鼓舞,每天所看的书比原计划多5页,因而他在2天内读书超过28页,后来他真正体会到读书的乐趣,积极性大增,每天比原计划多读了10页,但照此速度4天他所读的页数还没有达到84页。问小明原计划每天读多少页书?分析:1.审题、设未知数:2.找不等关系:3.列不等式组:4.解不等式组:5.根据实际情况,写出答案.6.一定要答例2、市新华书店听说了该校的读书节活动,决定给一年级的小朋友免费赠送若干套《十万个为什么》。如果每班分10套,那么余5套;如果前面的班级每个班分13套,那么最后一个班级虽然分有《十万个为什么》,但不足4套.问:一年级有多少个班级?《十万个为什么》共有多少套?分析:不等关系为:关于用不等式(组)解决的应用题常见类型(一)分配问题:通常把量少的那个设为未知数,那么量大的那个可以用该未知数表示1、一群女生住若干间宿舍,每间住4人,剩下19人无房住;每间住6人,有一间宿舍住不满。如果有x间宿舍,那么可以列出关于x的不等式组:(一元一次不等式组)可能有多少间宿舍、多少名学生?解:依题意得,194)1(61946xxxx或1≤4x+19-6(x-1)6哪一种更容易理解?-7-2、将不足40只鸡放入若干个笼中,若每个笼里放4只,则有一只鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,且最后一笼不足3只。问有笼多少个?有鸡多少只?(二)、速度、时间问题1、爆破施工时,导火索燃烧的速度是0.8cm/s,人跑开的速度是5m/s,为了使点火的战士在施工时能跑到不小于100m的安全地区,导火索至少需要多长?(一元一次不等式)解:很多人会“设导火索至少需要x米长”,注意这种设法是错误的。应“设导火索需要x米长”。然后列出不等式,求出解,根据解,再决定取值是至少还是至多,还是大于等,以下类推。2、王凯家到学校2.1千米,现在需要在18分钟内走完这段路。已知王凯步行速度为90米/分,跑步速度为210米/分,问王凯至少需要跑几分钟?(一元一次不等式)3、抗洪抢险,向险段运送物资,共有120公里原路程,需要1小时送到,前半小时已经走了50公里后,后半小时速度多大才能保证及时送到?(一元一次不等式)(三)、工程问题1、用每分钟抽1.1吨水的A型抽水机来抽池水,半小时可以抽完;如果改用B型抽水机,估计20分钟到22分可以抽完。B型抽水机比A型抽水机每分钟约多抽多少吨水?2、某工人计划在15天里加工408个零件,最初三天中每天加工24个,问以后每天至少要加工多少个零件,才能在规定的时间内超额完成任务?3、一本英语书98页,张力读了7天(一周)还没读完,而李永不到一周就读完了.李永平均每天比张力多读2页,张力每天读多少页?-8-(四)、价格问题1、商场购进某种商品m件,每件在进价的基础上,加价30元售出全部商品的65%,然后再降价10%,这样每件仍可获利18元,又售出全部商品的25%。(1)试求该商品的进价和第一次的售价;(2)为了确保这批商品总的利润率不低于25%,剩余商品的售价应不低于多少元?解:该商品的进价x(x+30)(1-10%)=x+18,x=90第一次的售价是90+30=120元剩余商品的售价为y元120*65%m+120*(1-10%)*25%m+y*(1-65%-25%)m≥90m*(1+25%)y≥75剩余商品的售价应不低于75元2、某工程队要招聘甲、乙两种工种的工人150人,甲、乙两种工种的工人月工资分别为600元和1000元。现要求乙种工种的人数不少于甲种工种人数的2倍,问甲、乙两种工种各招聘多少人时,可使得每月所付的工资最少?(五)、其他问题1.有一个两位数,其十位上的数比个位上的数小2,已知这个两位数大于20且小于40,求这个两位数2、某公司需刻录一批光盘(总数不超过100张),若请专业公司刻录,每张需10元(包括空白光盘费);若公司自刻,除设备租用费200元以外,每张还需成本5元(空白光盘费)。问刻录这批光盘,是请专业公司刻录费用省,还是自刻费用省?解:1.假设:请专业公司刻录费用省10x<200+5xx<402.假设:公司自己刻录费用省200+5x<10xx>40∴当刻录张数小于40张时,请专业公司刻费用省当刻录张数大于40张时,公司自刻费用省当刻录张数等于40张时,两者费用一样多3、考试共有25道选择
本文标题:八年级数学(上)浙教版:一元一次不等式知识要点、典型例题、习题讲解
链接地址:https://www.777doc.com/doc-7754764 .html