您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 中考卷-2020中考数学真题(解析版)(127)
第1页(共19页)2020年浙江省衢州市中考数学试卷参考答案一、选择题(本题共有10小题,每小题3分,共30分)1.(3分)比0小1的数是()A.0B.﹣1C.1D.±1【分析】根据题意列式计算即可得出结果.【解答】解:0﹣1=﹣1,即比0小1的数是﹣1.故选:B.2.(3分)下列几何体中,俯视图是圆的几何体是()A.B.C.D.【分析】分别找出从图形的上面看所得到的图形即可.【解答】解:A、俯视图是圆,故此选项正确;B、俯视图是正方形,故此选项错误;C、俯视图是长方形,故此选项错误;D、俯视图是长方形,故此选项错误.故选:A.3.(3分)计算(a2)3,正确结果是()A.a5B.a6C.a8D.a9【分析】根据幂的乘方法则进行计算即可.【解答】解:由幂的乘方与积的乘方法则可知,(a2)3=a2×3=a6.故选:B.4.(3分)如图是一个游戏转盘,自由转动转盘,当转盘停止转动后,指针落在数字“Ⅱ”所示区域内的概率是()第2页(共19页)A.B.C.D.【分析】直接利用“Ⅱ”所示区域所占圆周角除以360,进而得出答案.【解答】解:由扇形统计图可得,指针落在数字“Ⅱ”所示区域内的概率是:=.故选:A.5.(3分)要使二次根式有意义,则x的值可以为()A.0B.1C.2D.4【分析】根据二次根式有意义的条件可得x﹣3≥0,再解即可.【解答】解:由题意得:x﹣3≥0,解得:x≥3,故选:D.6.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】分别解两个不等式,然后求它们的公共部分即可得到原不等式组的解集,再在数轴上表示出来即可求解.【解答】解:,由①得x≤1;由②得x>﹣1;故不等式组的解集为﹣1<x≤1,在数轴上表示出来为:.故选:C.7.(3分)某厂家2020年1~5月份的口罩产量统计如图所示.设从2月份到4月份,该厂家口罩产量的平均月增长率为x,根据题意可得方程()第3页(共19页)A.180(1﹣x)2=461B.180(1+x)2=461C.368(1﹣x)2=442D.368(1+x)2=442【分析】本题为增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设这个增长率为x,根据“2月份的180万只,4月份的利润将达到461万只”,即可得出方程.【解答】解:从2月份到4月份,该厂家口罩产量的平均月增长率为x,根据题意可得方程:180(1+x)2=461,故选:B.8.(3分)过直线l外一点P作直线l的平行线,下列尺规作图中错误的是()A.B.C.D.【分析】根据平行线的判定方法一一判断即可.【解答】解:A、由作图可知,内错角相等两直线平行,本选项不符合题意.B、由作图可知,同位角相等两直线平行,本选项不符合题意.C、与作图可知,垂直于同一条直线的两条直线平行,本选项不符合题意,D、无法判断两直线平行,故选:D.9.(3分)二次函数y=x2的图象平移后经过点(2,0),则下列平移方法正确的是()A.向左平移2个单位,向下平移2个单位B.向左平移1个单位,向上平移2个单位C.向右平移1个单位,向下平移1个单位D.向右平移2个单位,向上平移1个单位第4页(共19页)【分析】求出平移后的抛物线的解析式,利用待定系数法解决问题即可.【解答】解:A、平移后的解析式为y=(x+2)2﹣2,当x=2时,y=14,本选项不符合题意.B、平移后的解析式为y=(x+1)2+2,当x=2时,y=11,本选项不符合题意.C、平移后的解析式为y=(x﹣1)2﹣1,当x=2时,y=0,函数图象经过(2,0),本选项符合题意.D、平移后的解析式为y=(x﹣2)2+1,当x=2时,y=1,本选项不符合题意.故选:C.10.(3分)如图,把一张矩形纸片ABCD按所示方法进行两次折叠,得到等腰直角三角形BEF,若BC=1,则AB的长度为()A.B.C.D.【分析】先判断出∠ADE=45°,进而判断出AE=AD,利用勾股定理即可得出结论.【解答】解:由折叠补全图形如图所示,∵四边形ABCD是矩形,∴∠ADA'=∠B=∠C=∠A=90°,AD=BC=1,CD=AB,由第一次折叠得:∠DAE=∠A=90°,∠ADE=∠ADC=45°,∴∠AED=∠ADE=45°,∴AE=AD=1,在Rt△ADE中,根据勾股定理得,DE=AD=,故选:A.二、填空题(本题共有6小题,每小题4分,共24分)11.(4分)一元一次方程2x+1=3的解是x=1.【分析】将方程移项,然后再将系数化为1即可求得一元一次方程的解.【解答】解;将方程移项得,2x=2,系数化为1得,第5页(共19页)x=1.故答案为:1.12.(4分)定义a※b=a(b+1),例如2※3=2×(3+1)=2×4=8.则(x﹣1)※x的结果为x2﹣1.【分析】根据规定的运算,直接代值后再根据平方差公式计算即可.【解答】解:根据题意得:(x﹣1)※x=(x﹣1)(x+1)=x2﹣1.故答案为:x2﹣1.13.(4分)某班五个兴趣小组的人数分别为4,4,5,x,6.已知这组数据的平均数是5,则这组数据的中位数是5.【分析】先根据平均数的定义计算出x的值,再把数据按从小到大的顺序排列,找出最中间的数,即为中位数.【解答】解:∵某班五个兴趣小组的人数分别为4,4,5,x,6,已知这组数据的平均数是5,∴x=5×5﹣4﹣4﹣5﹣6=6,∴这一组数从小到大排列为:4,4,5,6,6,∴这组数据的中位数是5.故答案为:5.14.(4分)小慧用图1中的一副七巧板拼出如图2所示的“行礼图”,已知正方形ABCD的边长为4dm,则图2中h的值为(4+)dm.【分析】根据七巧板的特征,依次得到②④⑥⑦的高,再相加即可求解.【解答】解:∵正方形ABCD的边长为4dm,∴②的斜边上的高是2dm,④的高是1dm,⑥的斜边上的高是1dm,⑦的斜边上的高是dm,∴图2中h的值为(4+)dm.故答案为:(4+).15.(4分)如图,将一把矩形直尺ABCD和一块含30°角的三角板EFG摆放在平面直角坐标系中,AB在x轴上,点G与点A重合,点F在AD上,三角板的直角边EF交BC于点M,反比例函数y=(x>0)的图象恰好经过点F,M.若直尺的宽CD=3,三角板的斜边FG=8,则k=40.第6页(共19页)【分析】通过作辅助线,构造直角三角形,求出MN,FN,进而求出AN、MB,表示出点F、点M的坐标,利用反比例函数k的意义,确定点F的坐标,进而确定k的值即可.【解答】解:过点M作MN⊥AD,垂足为N,则MN=CD=3,在Rt△FMN中,∠MFN=30°,∴FN=MN=3,∴AN=MB=8﹣3=5,设OA=x,则OB=x+3,∴F(x,8),M(x+3,5),∴8x=(x+3)×5,解得,x=5,∴F(5,8),∴k=5×8=40.故答案为:40.16.(4分)图1是由七根连杆链接而成的机械装置,图2是其示意图.已知O,P两点固定,连杆PA=PC=140cm,AB=BC=CQ=QA=60cm,OQ=50cm,O,P两点间距与OQ长度相等.当OQ绕点O转动时,点A,B,C的位置随之改变,点B恰好在线段MN上来回运动.当点B运动至点M或N时,点A,C重合,点P,Q,A,B在同一直线上(如图3).(1)点P到MN的距离为160cm.第7页(共19页)(2)当点P,O,A在同一直线上时,点Q到MN的距离为cm.【分析】(1)如图3中,延长PO交MN于T,过点O作OH⊥PQ于H.解直角三角形求出PT即可.(2)如图4中,当O,P,A共线时,过Q作QH⊥PT于H.设HA=xcm.解直角三角形求出HT即可.【解答】解:(1)如图3中,延长PO交MN于T,过点O作OH⊥PQ于H.由题意:OP=OQ=50cm,PQ=PA﹣AQ=14﹣=60=80(cm),PM=PA+BC=140+60=200(cm),PT⊥MN,∵OH⊥PQ,∴PH=HQ=40(cm),∵cos∠P==,∵=,∴PT=160(cm),∴点P到MN的距离为160cm,故答案为160.(2)如图4中,当O,P,A共线时,过Q作QH⊥PT于H.设HA=xcm.第8页(共19页)由题意AT=PT﹣PA=160﹣140=20(cm),OA=PA﹣OP=140﹣50=90(cm),OQ=50cm,AQ=60cm,∵QH⊥OA,∴QH2=AQ2﹣AH2=OQ2﹣OH2,∴602﹣x2=502﹣(90﹣x)2,解得x=,∴HT=AH+AT=(cm),∴点Q到MN的距离为cm.故答案为.三、解答题(本题共有8小题,第17~19小题每小题6分,第20~21小题每小题6分,第22~23小题每小题6分,第24小题12分,共66分.请务必写出解答过程)17.(6分)计算:|﹣2|+()0﹣+2sin30°.【分析】直接利用零指数幂的性质以及特殊角的三角函数值、二次根式的性质分别化简得出答案.【解答】解:原式=2+1﹣3+2×=2+1﹣3+1=1.18.(6分)先化简,再求值:÷,其中a=3.【分析】直接利用分式的乘除运算法则化简进而代入数据求出答案.【解答】解:原式=•(a﹣1)=,当a=3时,原式==.第9页(共19页)19.(6分)如图,在5×5的网格中,△ABC的三个顶点都在格点上.(1)在图1中画出一个以AB为边的▱ABDE,使顶点D,E在格点上.(2)在图2中画出一条恰好平分△ABC周长的直线l(至少经过两个格点).【分析】(1)根据平行四边形的定义画出图形即可(答案不唯一).(2)利用数形结合的思想解决问题即可.【解答】解:(1)如图平行四边形ABDE即为所求(点D的位置还有6种情形可取).(2)如图,直线l即为所求、20.(8分)某市在九年级“线上教学”结束后,为了解学生的视力情况,抽查了部分学生进行视力检测.根据检测结果,制成下面不完整的统计图表.被抽样的学生视力情况频数表组别视力段频数A5.1≤x≤5.325B4.8≤x≤5.0115C4.4≤x≤4.7mD4.0≤x≤4.352(1)求组别C的频数m的值.(2)求组别A的圆心角度数.(3)如果视力值4.8及以上属于“视力良好”,请估计该市25000名九年级学生达到“视力良好”的人数.根据上述图表信息,你对视力保护有什么建议?第10页(共19页)【分析】(1)根据统计图中的数据,可以得到本次抽查的人数,从而可以得到m的值;(2)根据(1)中的结果和频数分布表,可以得到组别A的圆心角度数;(3)根据统计图中的数据,可以得到该市25000名九年级学生达到“视力良好”的人数,并提出合理化建议,建议答案不唯一,只要对保护眼睛好即可.【解答】解:(1)本次抽查的人数为:115÷23%=500,m=500×61.6%=308,即m的值是308;(2)组别A的圆心角度数是:360°×=18°,即组别A的圆心角度数是18°;(3)25000×=7000(人),答:该市25000名九年级学生达到“视力良好”的有7000人,建议是:同学们应少玩电子产品,注意用眼保护.21.(8分)如图,△ABC内接于⊙O,AB为⊙O的直径,AB=10,AC=6,连结OC,弦AD分别交OC,BC于点E,F,其中点E是AD的中点.(1)求证:∠CAD=∠CBA.(2)求OE的长.【分析】(1)利用垂径定理以及圆周角定理解决问题即可.(2)证明△AEC∽△BCA,推出=,求出EC即可解决问题.【解答】(1)证明:∵AE=DE,OC是半径,∴=,∴∠CAD=∠CBA.第11页(共19页)(2)解:∵AB是直径,∴∠ACB=90°,∵AE=DE,∴OC⊥AD,∴∠AEC=90°,∴∠AEC=∠ACB,∴△AEC∽△BCA,∴=,∴=,∴CE=3.6,∵OC=AB=5,∴OE=OC﹣EC=5﹣3.6=1.4.22.(10分)2020年5月16日,“钱塘江诗路”航道全线开通.一艘游轮从杭州出发前往衢州,线路如图1所示.当游轮到达建德境内的“七里扬帆”景点时,一艘货轮沿着同样的线路从杭州出发前往衢州.已知游轮的速度为20km/h,游轮行驶的时间记为t(h),两艘轮船距
本文标题:中考卷-2020中考数学真题(解析版)(127)
链接地址:https://www.777doc.com/doc-7754818 .html