您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 资阳市2005—2006学年度高中二年级第一学期期末质量检测理科数学
资阳市2005—2006学年度高中二年级第一学期期末质量检测理科数学本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至8页.全卷共150分,考试时间为120分钟.第Ⅰ卷(选择题共60分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、考号、考试科目用铅笔涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.3.考试结束时,将本试卷和答题卡一并收回.一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.抛物线x=-2y2的准线方程是().A.21yB.21yC.81xD.81x2.两直线2x–y+k=0与4x–2y+1=0的位置关系为().A.平行B.垂直C.相交但不垂直D.平行或重合3.不等式21xx≤0的解集是().A.{x│≤2}B.{x│1<x≤2=C.{x│1≤x≤2}D.{x│1≤x<2=4.圆22(1)1xy的圆心到直线33yx的距离是().A.12B.32C.1D.35.已知a、b、c∈R,那么下列命题正确的是().A.a>bac2>bc2B.bacbcaC.33110abababD.22110ababab6.若直线l的斜率k满足|k|≤1,则直线l的倾斜角的取值范围是().A.43,4B.4,0,43C.0,4D.43,22,47.若A是定直线l外的一定点,则过A且与l相切圆的圆心轨迹是().A.圆B.抛物线C.椭圆D.双曲线一支8.曲线y=31x3-x2+5在x=1处的切线的倾斜角是().A.6B.3C.4D.349.已知点P(x,y)在不等式组20,10,220xyxy表示的平面区域上运动,则z=x-y的取值范围是().A.[-2,-1]B.[-2,1]C.[-1,2]D.[1,2]10.设0<a<21,则下列不等式成立的是().A.aaaa11111122B.aaaa11111122C.22111111aaaaD.22111111aaaa11.若双曲线222141xymm的焦点在y轴上,则m的取值范围是().A.(-2,2)B.(1,2)C.(-2,-1)D.(-1,2)12.已知椭圆有这样的光学性质:从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线经过椭圆的另一个焦点.现有一水平放置的椭圆形台球盘,其长轴长为2a,焦距为2c,若点A,B是它的焦点,当静放在点A的小球(不计大小),从点A沿直线出发,经椭圆壁反弹后再回到点A时,小球经过的路程是().A.4aB.2(a-b)C.2(a+c)D.不能惟一确定资阳市2005—2006学年度高中二年级第一学期期末质量检测理科数学第Ⅱ卷(非选择题共90分)题号二三总分总分人171819202122得分注意事项:1.第Ⅱ卷共6页,用钢笔或圆珠笔直接答在试题卷上.2.答卷前将密封线内的项目填写清楚.二、填空题:本大题共4个小题,每小题4分,共16分.把答案直接填在题中横线上.13.用“”或“”填空:如果0ab1,n∈N*,那么1na______1nb_______1.14.已知函数22318(224()8(2)2xxxxfxxxx当时),当时,则2lim()xfx的值是_________.15.两圆x2+y2=3与2cos,2sinxy的位置关系是_________.16.给出下列四个命题:①两平行直线0123yx和0246yx间的距离是13132;②方程11422tytx不可能表示圆;③若双曲线1422kyx的离心率为e,且21e,则k的取值范围是20,60k;④曲线0992233xyyxyx关于原点对称.其中所有正确命题的序号是_____________.三、解答题:本大题共6个小题,共74分.解答应写出必要的文字说明,证明过程或演算步骤.17.(本小题满分12分)(Ⅰ)比较下列两组实数的大小:①2-1与2-3;②2-3与6-5;(Ⅱ)类比以上结论,写出一个更具一般意义的结论,并给以证明.18.(本小题满分12分)已知直线l过点M(0,1),且l被两已知直线l1:x-3y+10=0和l2:2x+y-8=0所截得的线段恰好被M所平分,求直线l方程.19.(本小题满分12分)已知圆C经过点A(2,-3)和B(-2,-5).(Ⅰ)当圆C的面积最小时,求圆C的方程;(Ⅱ)若圆C的圆心在直线x-2y-3=0上,求圆C的方程.20.(本小题满分12分)已知抛物线的顶点在原点,它的准线经过双曲线12222byax的左焦点,且与x轴垂直,此抛物线与双曲线交于点(6,23),求此抛物线与双曲线的方程.21.(本小题满分12分)已知实数a>0,解关于x的不等式3)1(xxa>1.22.(本小题满分14分)如图,已知△OFQ的面积为S,且OF·FQ=1,(Ⅰ)若S满足条件21S2,求向量OF与FQ的夹角θ的取值范围;(Ⅱ)设|OF|=c(c≥2),S=43c,若以O为中心,F为焦点的椭圆经过点Q,当|OQ|取得最小值时,求此椭圆的方程.资阳市2005—2006学年度高中二年级第一学期期末质量检测数学试题参考答案及评分意见一、选择题:每小题5分,共60分.1-5.DDBAC;6-10.BBDCA;11-12.CD.二、填空题:每小题4分,共16分.13.,;14.54;15.相离;16.①,④.三、解答题:每小题5分,共60分.17.(Ⅰ)①(2+3)2-(2+1)2=26-4>0.故2+3>2+1,即2-1>2-3.··········································4分②(2+5)2-(6+3)2=45-218=220-218>0.故2+5>6+3,即2-3>6-5.7分(Ⅱ)一般结论:若n是正整数,则1n-n>3n-2n.······10分证明:与(Ⅰ)类似(从略).································································12分18.过点M与x轴垂直的直线显然不合要求,故可设所求直线方程为y=kx+1,······························································································2分若此直线与两已知直线分别交于A、B两点,则解方程组可得xA=137k,xB=27k.······························································6分由题意137k+27k=0,∴k=-41.10分故所求直线方程为x+4y-4=0.····················································12分另解一:设所求直线方程y=kx+1,代入方程(x-3y+10)(2x+y-8)=0,得(2-5k-3k2)x2+(28k+7)x-49=0.由xA+xB=-2352728kkk=2xM=0,解得k=-41.∴直线方程为x+4y-4=0.另解二:∵点B在直线2x-y-8=0上,故可设B(t,8-2t),由中点公式得A(-t,2t-6).∵点A在直线x-3y+10=0上,∴(-t)-3(2t-6)+10=0,得t=4.∴B(4,0).故直线方程为x+4y-4=0.19.(Ⅰ)要使圆的面积最小,则AB为圆的直径,∴所求圆的方程为(x-2)(x+2)+(y+3)(y+5)=0,即x2+(y+4)2=5.··········································································5分(Ⅱ)因为kAB=12,AB中点为(0,-4),所以AB中垂线方程为y+4=-2x,即2x+y+4=0.·························8分解方程组,032,042yxyx得.2,1yx即圆心为(-1,-2).根据两点间的距离公式,得半径r=10,因此,所求的圆的方程为(x+1)2+(y+2)2=10.·································12分另解:设所求圆的方程为(x-a)2+(y-b)2=r2,根据已知条件得032)5()2()3()2(222222barbarba.10,2,12rba所以所求圆的方程为(x+1)2+(y+2)2=10.20.由题意可知抛物线的焦点到准线间的距离为2C(即双曲线的焦距).设抛物线的方程为24.ycx4分∵抛物线过点2233(,6)641122ccab即①又知2222223()(6)962114abab②8分由①②可得2213,44ab,10分∴所求抛物线的方程为xy42,双曲线的方程为224413xy.··········12分21.原不等式化为(Ⅰ)3,(1)3,xaxx或(Ⅱ)3,(1)3.xaxx即(Ⅰ)3,(1)3xaxa或(Ⅱ)3,(1)3.xaxa·······································4分(1)当0<a<1时,对于(Ⅰ)有3,31xaxa3<x<13aa;对于(Ⅱ)有3,31xaxax∈.∴当0<a<1时,解集为{x|3<x<13aa}.·······································8分(2)当a=1时,解集为{x|x>3}.10分(3)当a>1时,解(Ⅰ)得x>3,(Ⅱ)得x<13aa,此时解集为{x|x>3或x<13aa}.··················································12分22.(Ⅰ)∵OF·FQ=1,∴|OF|·|FQ|·cosθ=1.又21|OF|·|FQ|·sin(180°-θ)=S,∴tanθ=2S,S=2tan.································································3分又21S2,∴212tan2,即1tanθ4,∴4θarctan4.·········································································5分(Ⅱ)以OF所在的直线为x轴,以OF的过O点的垂线为y轴建立直角坐标系(如图).6分∴O(0,0),F(c,0),Q(x0,y0).设椭圆方程为22ax+22by=1.又OF·FQ=1,S=43c,∴(c,0)·(x0-c,y0)=1.①21·c·|y0|=43c.②·····················································8分由①得c(x0-c)=1x0=c+c1.由②得|y0|=23.∴|OQ|=2020yx=219()4cc.·············································10分∵c≥2,∴当c=2时,|OQ|min=219(2)24=342,此时Q(25,±23),F(2,0).······················
本文标题:资阳市2005—2006学年度高中二年级第一学期期末质量检测理科数学
链接地址:https://www.777doc.com/doc-7774366 .html