您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 高二数学选修2-3练习题
高二数学选修2-3练习题(三)A组题(共100分)一.选择题:本大题共5题,每小题7分,共35分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列两个变量之间的关系哪个不是函数关系(D)A.角度和它的正弦值B.正方形边长和面积C.正n边形边数和顶点角度之和D.人的年龄和身高2.在下边的列联表中,类Ⅰ中类B所占的比例为(A).cAac.cBcd.bCab.bDbc3.对于线性相关系数r,不列说法正确的是(C)A.|r|),0(,|r|越大,相关程度越大;反之相关程度越小B.|r|),(,|r|越大,相关程度越大;反之相关程度越小C.|r|1,且|r|越接近于1,相关程度越大;|r|越接近于0,相关程度越小D.以上说法都不正确4.分类变量X和Y的列联表如下,则(C)A.adbc越小,说明X与Y的关系越弱B.adbc越大,说明X与Y的关系越强C.2()adbc越大,说明X与Y的关系越强D.2()adbc越接近于0,说明X与Y关系越强5.在两个变量y与x的回归模型中,分别选择了4个不同模型,它们的相关指数R2如下,其中拟合效果最好的是(B)A.模型1的相关指数R2为0.78B.模型2的相关指数R2为0.85C.模型3的相关指数R2为0.61D.模型4的相关指数R2为0.31二.填空题:本大题共4小题,每小题6分,共24分。6.相关指数公式R2=.7.残差平方和),(baQ的计算公式是.Ⅱ类1类2Ⅰ类Aab类BcdY1Y2合计X1aba+bX2cdc+d合计a+cb+da+b+c+d8.线性回归直线方程axby必过点.9.某高校“审计专业”课程的教师随机调查了选该课的一些学生情况,具体数据如下表:性别专业非审计专业审计专业男1310女720为了判断主修“审计专业’是否与性别有关系,根据表中的数据,得到因为K2841.3,所以判定主修“审计专业”与性别有关系,那么这种判断出错的可能性为_____________5%三.解答题:本大题共3小题,共41分,解答题应写出文字说明、证明过程或演算步骤。10.观察两相关量得如下数据:x-1-2-3-4-554321y-9-7-5-3-113579求两变量间的回归方程.11.在研究色盲与性别的关系调查中,调查了男性480人,其中有38人患色盲,调查的520个女性中6人患色盲,(1)根据以上的数据建立一个2×2的列联表;(2)你认为“性别与患色盲有关系吗?”,如果有则出错的概率会是多少12.假设关于某设备使用年限x(年)和所支出的维修费用y(万元)有如下统计资料:x23456y2.23.85.56.57.0若由资料知,y对x呈线性相关关系,试求:(1)回归直线方程;(2)估计使用年限为10年时,维修费用约是多少?B组题(共100分)四.选择题:本大题共5题,每小题7分,共35分。在每小题给出的四个选项中,只有一项是符合题目要求的。13.工人工资(元)依劳动生产率(千元)变化的回归方程为y=50+80x,下列判断中正确的是(B)A.劳动生产率为1000元时,工资为130元B.劳动生产率平均提高1000元时,工资平均提高80元C.劳动生产率平均提高1000元时,工资平均提高130元D.当工资为250元时,劳动生产率为2000元14.在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是(C)A.若K2的观测值为K2=6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病B.从独立性检验可知有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患有肺病C.若从统计量中求出有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推判出现错误D.以上三种说法都不正确。15.利用独立性检验来考虑两个分类变量X和Y是否有关系时,通过查阅下表来确定断言“X和Y有关系”的可信度。如果K25.024,那么就有把握认为“X和Y有关系”的百分比为(D)P(k2k)0.500.400.250.150.100.050.0250.0100.0050.001k0.4550.7081.3232.0722.7063.845.0246.6357.87910.83A.25%B.75%C.2.5%D.97.5%16.已知两个变量x与y之间具有线性相关关系,5次试验的观测数据如下:x100120140160180y4554627592那么变量y关于x的回归直线方程只可能是(A)A.9.14575.0xyB.9.13572.0xyC.9.12575.0xyD.9.14572.0xy17.假设有两个分类变量m和n其22列联表为:对于同一样本来说,能说明m和n有关的可能性最大的一组数据为(D)A.a=8,b=7,c=6,d=5B.a=8,b=6,c=7,d=5C.a=5,b=6,c=7,d=8D.a=5,b=6,c=8,d=7五.填空题:本大题共4小题,每小题6分,共24分。18.两个临界值为2.706与6.635,当K2≤2.706时,认为事件A与B是_______(有关,无关)的,当K26.635时,有%的把握说A与B_______(有关,无关).19.某猪场用80头猪检验某种疫苗,结果是注射疫苗的44头中有12头发病,32头未发n1n2总计m1aba+bm2cdc+d总计a+cb+da+b+c+d病;未注射的36头中有22头发病,14头未发病,注射疫苗的猪的发病率为________,未注射疫苗的猪的发病率____________。20.若一个别样本的总体偏差平方和为256,残差平方和为32,则回归平方和为.21.某班主任对全班50名学生进行了作业量多少的调查,喜欢玩电脑游戏的同学认为作业多的有18人,认为作业不多的有9人,不喜欢玩电脑游戏的同学认为作业多的有8人,认为作业不多的有15人,则有_________的把握认为“喜欢玩电脑游戏与认为作业多”有关系。六.解答题:本大题共3小题,共41分,解答题应写出文字说明、证明过程或演算步骤。22.在一段时间内,某中商品的价格x元和需求量Y件之间的一组数据为:价格x1416182022需求量Y1210753求出Y对x的回归直线方程,并说明拟合效果的好坏。23.在调查学生语文成绩与历史成绩之间的关系时,得到如下数据(人数):历史成绩好历史成绩不好总计语文成绩好622385语文成绩不好282250总计9045135试判断语文成绩与历史成绩之间是否相关,判断出错的概率有多大?24.在试验中得到变量y与x的数据如下表:x0.06670.03880.03330.02730.0225y39.442.941.043.149.2由经验知y与x1之间具有线性相关关系,试求y与x之间的回归曲线方程,当x0=0.038时,预测y0的值.C组题(共50分)七.选择或填空题:本大题共2题。25.考察棉花种子经过处理跟生病之间的关系得到如下表数据:种子处理种子未处理合计得病32101133不得病61213274合计93314407根据以上数据,则()A.种子经过处理跟是否生病有关B.种子经过处理跟是否生病无关C.种子是否经过处理决定是否生病D.以上都是错误的26.根据右图二维条形图回答,吸烟与患肺病是(有,没有)关系.八.解答题:本大题共2小题,解答题应写出文字说明、证明过程或演算步骤。27.为了研究某种细菌随时间x变化,繁殖的个数,收集数据如下28.在某医院,因为患心脏病而住院的665名男性病人中,有214人秃顶;而另外772名不是因为患心脏病而住院的男性病人中有175人秃顶。分别利用图形和独立性检验方法判断秃顶与患心脏病是否有关系?你所得的结论在什么范围内有效?参考答案:1.D2.A3.C4.C5.B6.niiniiyyyyR12122)()(17.niie18.),(yx9.5%10.解:列表:i12345678910xi-1-2-3-4-553421yi-9-7-5-3-115379xiyi9141512551512149110,330,110,0,01011011012iiiiiiiyxyxyx101011000101101010210122101iiiiixxyxyxb0yxba∴回归直线方程为:xy11.解:(1)患色盲不患色盲总计男38442480女6514520总计449561000(2)假设H0:“性别与患色盲没有关系”先算出K的观测值:若认为“性别与患色盲有关系”,则出错的概率为0.00112.解:(1)依题列表如下:i12345ix23456iy2.23.85.56.57.0iixy4.411.422.032.542.045xy,5521190112.3iiiiixxy,521522215112.354512.31.239054105iiiixxybxx.51.2340.08aybx.∴回归直线方程为1.230.08yx.(2)当10x时,1.23100.0812.38y万元.即估计用10年时,维修费约为12.38万元.13.B14.C15.D16.A17.D18.无关,99%19.27.3%;61.1%20.22421.97.5%22.解:列出残差表为因而,拟合效果较好.23.假设0H:语文成绩与历史成绩无关。由表中数据求得K24.066,因为当0H成立时K23.841的概率约为0.05,所以有95%的把握,认为语文成绩与历史成绩有关,判断出错的概率只有5%。24.解:令xu1,由题目所给数据可得下表:序号uiyiui2yi2uiyi115.039.42251552.36591225.842.9665.641840.411106.82330.041.090016811230436.643.11339.561857.611577.46544.449.21971.362420.642184.48合计151.8215.65101.569352.026689.76计算得:b=0.29,a=34.3232.3429.0uy所以所求回归曲线方程为:42.3429.0xy当x0=0.038时,预测y0=95.4142.34038.029.025.B26.有27.解:(1)散点图如右所示28.解:根据题目所给数据得到如下列联表:患心脏病不患心脏病总计秃顶214175389不秃顶4515971048总计6657721437根据列联表1-13中的数据,得到所以有99%的把握认为“秃顶患心脏病有关”。
本文标题:高二数学选修2-3练习题
链接地址:https://www.777doc.com/doc-7780505 .html