您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 08高考数学立体几何练习题
OSBAC08高考数学立体几何练习题1.已知四棱锥PABCD的底面为直角梯形,//ABDC,PADAB,90底面ABCD,且1PAADDC,2AB,M是PB的中点.(Ⅰ)证明:面PAD面PCD;(Ⅱ)求AC与PB所成的角;(Ⅲ)求面AMC与面BMC所成二面角的大小.2.如图,在四棱锥PABCD中,底面ABCD为矩形,侧棱PA底面ABCD,3AB,1BC,2PA,E为PD的中点.(Ⅰ)求直线AC与PB所成角的余弦值;(Ⅱ)在侧面PAB内找一点N,使NE面PAC,并求出点N到AB和AP的距离.3.如图所示的多面体是由底面为ABCD的长方体被截面1AECF所截面而得到的,其中14,2,3,1ABBCCCBE.(Ⅰ)求BF的长;(Ⅱ)求点C到平面1AECF的距离.4.如图,在长方体1111ABCDABCD,中,11,2ADAAAB,点E在棱AD上移动.(Ⅰ)证明:11DEAD;(Ⅱ)当E为AB的中点时,求点E到面1ACD的距离;(Ⅲ)AE等于何值时,二面角1DECD的大小为4.5.(2007福建•理•18题)如图,正三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1中点.(Ⅰ)求证:AB1⊥面A1BD;(Ⅱ)求二面角A-A1D-B的大小;(Ⅲ)求点C到平面A1BD的距离.6.(2007宁夏•理•19题)如图,在三棱锥SABC中,侧面SAB与侧面SAC均为等边三角形,90BAC°,O为BC中点.(Ⅰ)证明:SO平面ABC;(Ⅱ)求二面角ASCB的余弦值.7.(2007陕西•理•19题)如图,在底面为直角梯形的四棱锥PABCD中//ADBC,,90ABC平面PAABC,32,2,4ABADPA,BC=6.(Ⅰ)求证:BDPAC平面;(Ⅱ)求二面角DBDP的大小.DCBAV立体几何练习题参考答案1.以A为坐标原点AD长为单位长度,如图建立空间直角坐标系,则各点坐标为1(0,0,0),(0,2,0),(1,1,0),(1,0,0),(0,0,1),(0,1,)2ABCDPM.(Ⅰ)证明:因.,0),0,1,0(),1,0,0(DCAPDCAPDCAP所以故由题设知ADDC,且AP与AD是平面PAD内的两条相交直线,由此得DC面PAD.又DC在面PCD上,故面PAD⊥面PCD.(Ⅱ)解:因),1,2,0(),0,1,1(PBAC.510||||,cos,2,5||,2||PBACPBACPBACPBACPBAC所以故(Ⅲ)解:在MC上取一点(,,)Nxyz,则存在,R使,MCNC..21,1,1),21,0,1(),,1,1(zyxMCzyxNC要使14,00,.25ANMCANMCxz只需即解得0),52,1,51(),52,1,51(,.0),52,1,51(,54MCBNBNANMCANN有此时能使点坐标为时可知当ANBMCBNMCANMCBNMCAN所以得由.,0,0为所求二面角的平面角.30304||,||,.5552cos(,).3||||2arccos().3ANBNANBNANBNANBNANBN故所求的二面角为2.解:(Ⅰ)建立如图所示的空间直角坐标系,则,,,,,ABCDPE的坐标为(0,0,0)A、(3,0,0)B、(3,1,0)C、(0,1,0)D、(0,0,2)P、1(0,,1)2E,从而).2,0,3(),0,1,3(PBAC设PBAC与的夹角为,则,1473723||||cosPBACPBAC∴AC与PB所成角的余弦值为1473.(Ⅱ)由于N点在侧面PAB内,故可设N点坐标为(,0,)xz,则)1,21,(zxNE,由NE面PAC可得,.0213,01.0)0,1,3()1,21,(,0)2,0,0()1,21,(.0,0xzzxzxACNEAPNE化简得即∴163zx即N点的坐标为)1,0,63(,从而N点到AB和AP的距离分别为31,6.3.解:(I)建立如图所示的空间直角坐标系,则(0,0,0)D,(2,4,0)B1(2,0,0),(0,4,0),(2,4,1),(0,4,3)ACEC设(0,0,)Fz.∵1AECF为平行四边形,.62,62||).2,4,2().2,0,0(.2),2,0,2(),0,2(,,11的长为即于是得由为平行四边形由BFBFEFFzzECAFFAEC(II)设1n为平面1AECF的法向量,)1,,(,11yxnADFn故可设不垂直于平面显然02020140,0,011yxyxAFnAEn得由.41,1,022,014yxxy即111),3,0,0(nCCCC与设又的夹角为,则.333341161133||||cos1111nCCnCC∴C到平面1AECF的距离为.11334333343cos||1CCd4.解:以D为坐标原点,直线1,,DADCDD分别为,,xyz轴,建立空间直角坐标系,设AEx,则11(1,0,1),(0,0,1),(1,,0),(1,0,0),(0,2,0)ADExAC(1).,0)1,,1(),1,0,1(,1111EDDAxEDDA所以因为(2)因为E为AB的中点,则(1,1,0)E,从而)0,2,1(),1,1,1(1ACED,)1,0,1(1AD,设平面1ACD的法向量为),,(cban,则,0,01ADnACn也即002caba,得caba2,从而)2,1,2(n,所以点E到平面1ACD的距离为.313212||||1nnEDh(3)设平面1DEC的法向量),,(cban,∴),1,0,0(),1,2,0(),0,2,1(11DDCDxCE由.0)2(02,0,01xbacbCEnCDn令1,2,2bcax,∴).2,1,2(xn依题意.225)2(222||||||4cos211xDDnDDn∴321x(不合,舍去),322x.∴23AE时,二面角1DECD的大小为4.5.解:(Ⅰ)取BC中点O,连结AO.ABC△为正三角形,AOBC⊥.在正三棱柱111ABCABC中,平面ABC⊥平面11BCCB,AD⊥平面11BCCB.取11BC中点1O,以O为原点,OB,1OO,OA的方向为xyz,,轴的正方向建立空间直角坐标系,则(100)B,,,(110)D,,,1(023)A,,,(003)A,,,1(120)B,,,1(123)AB,,,(210)BD,,,1(123)BA,,.12200ABBD,111430ABBA,1ABBD⊥,11ABBA⊥.1AB⊥平面1ABD.(Ⅱ)设平面1AAD的法向量为()xyz,,n.(113)AD,,,1(020)AA,,.AD⊥n,1AA⊥n,100ADAA,,nn3020xyzy,,03yxz,.令1z得(301),,n为平面1AAD的一个法向量.由(Ⅰ)知1AB⊥平面1ABD,1AB为平面1ABD的法向量.cosn,1113364222ABABABnn.二面角1AADB的大小为6arccos4.(Ⅲ)由(Ⅱ),1AB为平面1ABD法向量,1(200)(123)BCAB,,,,,.点C到平面1ABD的距离1122222BCABdAB.xzABCD1A1C1BOFy6.解:以O为坐标原点,射线OBOA,分别为x轴、y轴的正半轴,建立如图的空间直角坐标系Oxyz.设(100)B,,,则(100)(010)(001)CAS,,,,,,,,.SC的中点11022M,,,111101(101)2222MOMASC,,,,,,,,.00MOSCMASC,∴··.故,MOSCMASCMOMA,,等于二面角ASCB的平面角.3cos3MOMAMOMAMOMA,··,所以二面角ASCB的余弦值为33.7.解:(Ⅰ)如图,建立坐标系,则(000)A,,,(2300)B,,,(2360)C,,,(020)D,,,(004)P,,,(004)AP,,,(2360)AC,,,(2320)BD,,,0BDAP,0BDAC.BDAP⊥,BDAC⊥,又PAACA,BD⊥平面PAC.(Ⅱ)设平面PCD的法向量为(1)xy,,n,则0CDn,0PDn,又(2340)CD,,,(024)PD,,,2340240xyy,,解得4332xy,,43213,,n平面PAC的法向量取为2320BD,,m,cosm,39331mnnmn.二面角APCD的大小为393arccos31.AEDPCByzx
本文标题:08高考数学立体几何练习题
链接地址:https://www.777doc.com/doc-7782585 .html