您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 08高考数学第二轮复习圆锥曲线练习
08高考数学第二轮复习圆锥曲线练习一、知识结构1.方程的曲线在平面直角坐标系中,如果某曲线C(看作适合某种条件的点的集合或轨迹)上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:(1)曲线上的点的坐标都是这个方程的解;(2)以这个方程的解为坐标的点都是曲线上的点.那么这个方程叫做曲线的方程;这条曲线叫做方程的曲线.点与曲线的关系若曲线C的方程是f(x,y)=0,则点P0(x0,y0)在曲线C上f(x0,y0)=0;点P0(x0,y0)不在曲线C上f(x0,y0)≠0两条曲线的交点若曲线C1,C2的方程分别为f1(x,y)=0,f2(x,y)=0,则f1(x0,y0)=0点P0(x0,y0)是C1,C2的交点f2(x0,y0)=0方程组有n个不同的实数解,两条曲线就有n个不同的交点;方程组没有实数解,曲线就没有交点.2.圆圆的定义点集:{M||OM|=r},其中定点O为圆心,定长r为半径.圆的方程(1)标准方程圆心在c(a,b),半径为r的圆方程是(x-a)2+(y-b)2=r2圆心在坐标原点,半径为r的圆方程是x2+y2=r2(2)一般方程当D2+E2-4F>0时,一元二次方程x2+y2+Dx+Ey+F=0叫做圆的一般方程,圆心为(-2D,-2E,半径是24F-ED22.配方,将方程x2+y2+Dx+Ey+F=0化为(x+2D)2+(y+2E)2=44F-ED22当D2+E2-4F=0时,方程表示一个点(-2D,-2E);当D2+E2-4F<0时,方程不表示任何图形.点与圆的位置关系已知圆心C(a,b),半径为r,点M的坐标为(x0,y0),则|MC|<r点M在圆C内,|MC|=r点M在圆C上,|MC|>r点M在圆C内,其中|MC|=2020b)-(ya)-(x.(3)直线和圆的位置关系①直线和圆有相交、相切、相离三种位置关系直线与圆相交有两个公共点直线与圆相切有一个公共点直线与圆相离没有公共点②直线和圆的位置关系的判定(i)判别式法(ii)利用圆心C(a,b)到直线Ax+By+C=0的距离d=22CBbAaBA与半径r的大小关系来判定.3.椭圆、双曲线和抛物线椭圆、双曲线和抛物线的基本知识见下表.椭圆双曲线抛物线轨迹条件点集:({M||MF1+|MF2|=2a,|F1F2|<2a=点集:{M||MF1|-|MF2|.=±2a,|F2F2|>2a}.点集{M||MF|=点M到直线l的距离}.圆形标准方程22ax+22by=1(a>b>0)22ax-22by=1(a>0,b>0)y2=2px(p>0)顶点A1(-a,0),A2(a,0);B1(0,-b),B2(0,b)A1(0,-a),A2(0,a)O(0,0)轴对称轴x=0,y=0长轴长:2a短轴长:2b对称轴x=0,y=0实轴长:2a虚轴长:2b对称轴y=焦点F1(-c,0),F2(c,0)焦点在长轴上F1(-c,0),F2(c,0)焦点在实轴上F(2P,0)焦点对称轴上焦距|F1F2|=2c,c=b2-a2|F1F2|=2c,c=b2a2准线x=±ca2准线垂直于长轴,且在椭圆外.x=±ca2准线垂直于实轴,且在两顶点的内侧.x=-2p准线与焦点位于顶点两侧,且到顶点的距离相等.曲线性质离心率e=ac,0<e<1e=ac,e>1e=14.圆锥曲线的统一定义平面内的动点P(x,y)到一个定点F(c,0)的距离与到不通过这个定点的一条定直线l的距离之比是一个常数e(e>0),则动点的轨迹叫做圆锥曲线.其中定点F(c,0)称为焦点,定直线l称为准线,正常数e称为离心率.当0<e<1时,轨迹为椭圆当e=1时,轨迹为抛物线当e>1时,轨迹为双曲线5.坐标变换坐标变换在解析几何中,把坐标系的变换(如改变坐标系原点的位置或坐标轴的方向)叫做坐标变换.实施坐标变换时,点的位置,曲线的形状、大小、位置都不改变,仅仅只改变点的坐标与曲线的方程.坐标轴的平移坐标轴的方向和长度单位不改变,只改变原点的位置,这种坐标系的变换叫做坐标轴的平移,简称移轴.坐标轴的平移公式设平面内任意一点M,它在原坐标系xOy中的坐标是9x,y),在新坐标系x′O′y′中的坐标是(x′,y′).设新坐标系的原点O′在原坐标系xOy中的坐标是(h,k),则x=x′+hx′=x-h(1)或(2)y=y′+ky′=y-k公式(1)或(2)叫做平移(或移轴)公式.中心或顶点在(h,k)的圆锥曲线方程中心或顶点在(h,k)的圆锥曲线方程见下表.方程焦点焦线对称轴椭圆22h)-(xa+22k)-(yb=1(±c+h,k)x=±ca2+hx=hy=k22h)-(xb+22k)-(ya=1(h,±c+k)y=±ca2+kx=hy=k双曲线22h)-(xa-22k)-(yb=1(±c+h,k)=±ca2+kx=hy=k22k)-(ya-22h)-(xb=1(h,±c+h)y=±ca2+kx=hy=k抛物线(y-k)2=2p(x-h)(2p+h,k)x=-2p+hy=k(y-k)2=-2p(x-h)(-2p+h,k)x=2p+hy=k(x-h)2=2p(y-k)(h,2p+k)y=-2p+kx=h(x-h)2=-2p(y-k)(h,-2p+k)y=2p+kx=h二、知识点、能力点提示(一)曲线和方程,由已知条件列出曲线的方程,曲线的交点说明在求曲线方程之前必须建立坐标系,然后根据条件列出等式进行化简.特别是在求出方程后要考虑化简的过程是否是同解变形,是否满足已知条件,只有这样求出的曲线方程才能准确无误.另外,要求会判断曲线间有无交点,会求曲线的交点坐标.三、考纲中对圆锥曲线的要求:考试内容:.椭圆及其标准方程.椭圆的简单几何性质.椭圆的参数方程;.双曲线及其标准方程.双曲线的简单几何性质;.抛物线及其标准方程.抛物线的简单几何性质;考试要求:.(1)掌握椭圆的定义、标准方程和椭圆的简单几何性质,理解椭圆的参数方程;.(2)掌握双曲线的定义、标准方程和双曲线的简单几何性质;.(3)掌握抛物线的定义、标准方程和抛物线的简单几何性质;.(4)了解圆锥曲线的初步应用。四.对考试大纲的理解高考圆锥曲线试题一般有3题(1个选择题,1个填空题,1个解答题),共计22分左右,考查的知识点约为20个左右.其命题一般紧扣课本,突出重点,全面考查.选择题和填空题考查以圆锥曲线的基本概念和性质为主,难度在中等以下,一般较容易得分,解答题常作为数学高考中的压轴题,综合考查学生数形结合、等价转换、分类讨论、逻辑推理等诸方面的能力,重点考查圆锥曲线中的重要知识点,通过知识的重组与链接,使知识形成网络,着重考查直线与圆锥曲线的位置关系,往往结合平面向量进行求解,在复习应充分重视。求圆锥曲线的方程【复习要点】求指定的圆锥曲线的方程是高考命题的重点,主要考查识图、画图、数形结合、等价转化、分类讨论、逻辑推理、合理运算及创新思维能力,解决好这类问题,除要求熟练掌握好圆锥曲线的定义、性质外,命题人还常常将它与对称问题、弦长问题、最值问题等综合在一起命制难度较大的题,解决这类问题常用定义法和待定系数法.一般求已知曲线类型的曲线方程问题,可采用“先定形,后定式,再定量”的步骤.定形——指的是二次曲线的焦点位置与对称轴的位置.定式——根据“形”设方程的形式,注意曲线系方程的应用,如当椭圆的焦点不确定在哪个坐标轴上时,可设方程为mx2+ny2=1(m>0,n>0).定量——由题设中的条件找到“式”中特定系数的等量关系,通过解方程得到量的大小.【例题】【例1】双曲线2224byx=1(b∈N)的两个焦点F1、F2,P为双曲线上一点,|OP|<5,|PF1|,|F1F2|,|PF2|成等比数列,则b2=_________.解:设F1(-c,0)、F2(c,0)、P(x,y),则|PF1|2+|PF2|2=2(|PO|2+|F1O|2)<2(52+c2),即|PF1|2+|PF2|2<50+2c2,又∵|PF1|2+|PF2|2=(|PF1|-|PF2|)2+2|PF1|·|PF2|,依双曲线定义,有|PF1|-|PF2|=4,依已知条件有|PF1|·|PF2|=|F1F2|2=4c2∴16+8c2<50+2c2,∴c2<317,又∵c2=4+b2<317,∴b2<35,∴b2=1.答案:1【例2】已知圆C1的方程为3201222yx,椭圆C2的方程为12222byaxab0,C2的离心率为22,如果C1与C2相交于A、B两点,且线段AB恰为圆C1的直径,求直线AB的方程和椭圆C2的方程。解:由.,2,22,222222cbcaace得设椭圆方程为.122222bybx设).1,2().,().,(2211由圆心为yxByxA.2,42121yyxx又,12,12222222221221bybxbybx两式相减,得.022222122221byybxx,0))((2))((21212121yyyyxxxx又.1.2.421212121xxyyyyxx得)..2(1xyAB的方程为直线即3xy将得代入,1232222bybxxy.021812322bxxyxC1F2F1OAB.07224.22bCAB相交与椭圆直线由.3204)(222122121xxxxxxBA得.3203722422b解得.82b故所有椭圆方程.181622yx【例3】过点(1,0)的直线l与中心在原点,焦点在x轴上且离心率为22的椭圆C相交于A、B两点,直线y=21x过线段AB的中点,同时椭圆C上存在一点与右焦点关于直线l对称,试求直线l与椭圆C的方程.解法一:由e=22ac,得21222aba,从而a2=2b2,c=b.设椭圆方程为x2+2y2=2b2,A(x1,y1),B(x2,y2)在椭圆上.则x12+2y12=2b2,x22+2y22=2b2,两式相减得,(x12-x22)+2(y12-y22)=0,.)(221212121yyxxxxyy设AB中点为(x0,y0),则kAB=-002yx,又(x0,y0)在直线y=21x上,y0=21x0,于是-002yx=-1,kAB=-1,设l的方程为y=-x+1.右焦点(b,0)关于l的对称点设为(x′,y′),byxbxybxy111221解得则由点(1,1-b)在椭圆上,得1+2(1-b)2=2b2,b2=89,1692a.∴所求椭圆C的方程为2291698yx=1,l的方程为y=-x+1.解法二:由e=21,22222abaac得,从而a2=2b2,c=b.BAy=12xoyxF2F1设椭圆C的方程为x2+2y2=2b2,l的方程为y=k(x-1),将l的方程代入C的方程,得(1+2k2)x2-4k2x+2k2-2b2=0,则x1+x2=22214kk,y1+y2=k(x1-1)+k(x2-1)=k(x1+x2)-2k=-2212kk.直线l:y=21x过AB的中点(2,22121yyxx),则2222122121kkkk,解得k=0,或k=-1.若k=0,则l的方程为y=0,焦点F(c,0)关于直线l的对称点就是F点本身,不能在椭圆C上,所以k=0舍去,从而k=-1,直线l的方程为y=-(x-1),即y=-x+1,以下同解法一.解法3:设椭圆方程为)1()0(12222babyax直线l不平行于y轴,否则AB中点在x轴上与直线ABxy过21中点矛盾。故可设直线)2()1(xkyl的方程为整理得:消代入y)1()2()3(02)(2222222222bakaxakxbak)()(2211yxByxA,,设,22222212bakakxx知:代入上式得:又kxxkyy2)(212121221xxkk,212
本文标题:08高考数学第二轮复习圆锥曲线练习
链接地址:https://www.777doc.com/doc-7782648 .html