您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2016-2017年八年级上《全等三角形》期末复习练习及答案
第1页共12页2016-2017学年度第一学期八年级数学期末复习专题全等三角形姓名:_______________班级:_______________得分:_______________一选择题:1.下列结论错误的是()A.全等三角形对应边上的中线相等B.两个直角三角形中,两个锐角相等,则这两个三角形全等C.全等三角形对应边上的高相等D.两个直角三角形中,斜边和一个锐角对应相等,则这两个三角形全等2.已知△ABC≌△DEF,∠A=80°,∠E=50°,则∠F的度数为()A.30°B.50°C.80°D.100°3.在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是1000,那么△ABC中与这个角对应的角是()A.∠AB.∠BC.∠CD.∠D4.如图,△ABC≌△DEF,则此图中相等的线段有()A.1对B.2对C.3对D.4对5.要测量河两岸相对的两点,的距离,先在的垂线上取两点,,使,再作出的垂线,使,,在一条直线上(如图所示),可以说明△≌△,得,因此测得的长就是的长,判定△≌△最恰当的理由是()A.边角边B.角边角C.边边边D.边边角6.如图所示,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,下列不正确的等式是()A.AB=ACB.∠BAE=∠CADC.BE=DCD.AD=DE第2页共12页7.如图,已知点E在△ABC的外部,点D在BC边上,DE交AC于F,若∠1=∠2=∠3,AC=AE,则有()A.△ABD≌△AFDB.△AFE≌△ADCC.△AEF≌△ACBD.△ABC≌△ADE8.如图所示,∠E=∠F=90°,∠B=∠C,AE=AF,结论:①EM=FN;②CD=DN;③∠FAN=∠EAM;④△ACN≌△ABM.其中正确的有()A.1个B.2个C.3个D.4个9.在如图所示的5×5方格中,每个小方格都是边长为1的正方形,△ABC是格点三角形(即顶点恰好是正方形的顶点),则与△ABC有一条公共边且全等的所有格点三角形的个数是()A.1B.2C.3D.410.如图,∠DAE=∠ADE=15°,DE∥AB,DF⊥AB,若AE=8,则DF等于()A.5B.4C.3D.211.如图,在△ABC中,BD平分∠ABC,与AC交于点D,DE⊥AB于点E,若BC=5,△BCD的面积为5,则ED的长为().A.B.1C.2D.5第3页共12页12.如图,AB=AC,BE⊥AC于E,CF⊥AB于F,BE,CF交于D,则以下结论:①△ABE≌△ACF;②△BDF≌△CDE;③点D在∠BAC的平分线上.正确的是()A.①B.②C.①②D.①②③13.如图所示,△ABC是等边三角形,AQ=PQ,PR⊥AB于R点,PS⊥AC于S点,PR=PS.则四个结论:①点P在∠BAC的平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP.正确的结论是()A.①②③④B.只有①②C.只有②③D.只有①③14.如图,AC=AD,BC=BD,连结CD交AB于点E,F是AB上一点,连结FC,FD,则图中的全等三角形共有()A.3对B.4对C.5对D.6对15.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于()A.10B.7C.5D.416.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF.其中正确的结论共有()A.4个B.3个C.2个D.1个第4页共12页17.正方形ABCD、正方形BEFG和正方形RKPF的位置如图所示,点G在线段DK上,正方形BEFG的边长为4,则△DEK的面积为()A.10B.12C.14D.1618.如图,△ABC中,∠ACB=90°,D为AB上任一点,过D作AB的垂线,分别交边AC、BC的延长线于EF两点,∠BAC∠BFD的平分线交于点I,AI交DF于点M,FI交AC于点N,连接BI.下列结论:①∠BAC=∠BFD;②∠ENI=∠EMI;③AI⊥FI;④∠ABI=∠FBI;其中正确结论的个数是()A.1个B.2个C.3个D.4个19.如图,点P、Q分别是边长为4cm的等边△ABC的边AB、BC上的动点(其中P、Q不与端点重合),点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,连接AQ、CP交于点M,则在P、Q运动的过程中,下列结论:⑴BP=CM;⑵△ABQ≌△CAP;⑶∠CMQ的度数始终等于60°;⑷当第秒或第秒时,△PBQ为直角三角形.其中正确的结论有()A.1个B.2个C.3个D.420.如图,在不等边△ABC中,PM⊥AB于点M,PN⊥AC于点N,且PM=PN,Q在AC上,PQ=QA,MP=3,△AMP的面积是6,下列结论:①AM<PQ+QN,②QP∥AM,③△BMP≌△PQC,④∠QPC+∠MPB=90°,⑤△PQN的周长是7,其中正确的有()个.A.1B.2C.3D.4第5页共12页二填空题:21.小明将一块三角形的玻璃棒摔碎成如图所示的四块(即图中标有1,2,3,4的四块),若只带一块配成原来一样大小的三角形,则应该带第_______块.22.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=________.23.如图,△ABC中,∠C=90°,∠BAC的平分线交BC于点D,若CD=4,则点D到AB的距离是______.24.如图,四边形ABCD的对角线AC,BD相交于点O,△ABO≌△ADO.下列结论:①AC⊥BD;②CB=CD;③△ABC≌△ADC;④DA=DC.其中所有正确结论的序号是.25.如图,△ABC的角平分线交于点P,已知AB,BC,CA的长分别为5,7,6,则S△ABP∶S△BPC∶S△APC=___________.26.如图,BD平分∠ABC,DE⊥AB于E,DF⊥BC于F,AB=6,BC=8.若S△ABC=28,则DE=.第6页共12页27.如图,OP平分∠AOB,PB⊥OB,OA=8cm,PB=3cm,则△POA的面积等于cm2.28.如图的三角形纸片中,AB=8cm,BC=6cm,AC=7cm,沿过点B的直线折叠三角形,使点C落在AB边的点E处,折痕为BD,则△AED的周长为.29.如图,已知长方形ABCD的边长AB=20cm,BC=16cm,点E在边AB上,AE=6cm,如果点P从点B出发在线段BC上以2cm/s的速度向点C向运动,同时,点Q在线段CD上从点C到点D运动.则当△BPE与△CQP全等时,时间t为s.30.如图,在△ABC中,AB=AC,BE=CD,BD=CF,则∠α与∠A之间的数量关系为.31.如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC,判断EC与BF的关系,并说明理由.第7页共12页32.如图,已知△ABC中,点D在边AC上,且BC=CD(1)用尺规作出∠ACB的平分线CP(保留作图痕迹,不要求写作法);(2)在(1)中,设CP与AB相交于点E,连接DE,求证:BE=DE.33.如图,四边形ABDC中,∠D=∠ABD=90゜,点O为BD的中点,且OA平分∠BAC.(1)求证:OC平分∠ACD;(2)求证:AB+CD=AC.34.在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,△ABD和△AFD关于直线AD对称,∠FAC的平分线交BC于点G,连接FG.(1)求∠DFG的度数;(2)设∠BAD=θ,①当θ为何值时,△DFG为等腰三角形;②△DFG有可能是直角三角形吗?若有,请求出相应的θ值;若没有,请说明理由.第8页共12页35.如图,在△ABC中,AD为BC边上的中线,E为AC上的一点,BE交AD于点F,已知AE=EF.求证:AC=BF.36.已知三角形ABC中,∠A=90°,AB=AC,D为BC的中点,(1)如图,E,F分别是AB,AC上的点,且BE=AF,求证:△DEF为等腰直角三角形.(2)若E,F分别为AB,CA延长线上的点,仍有BE=AF,其他条件不变,那么,△DEF是否仍为等腰直角三角形?证明你的结论.第9页共12页37.如图(1)边长为6的等边三角形ABC中,点D沿射线AB方向由A向B运动,点F同时从C出发,以相同的速度沿射线BC方向运动,过点D作DE⊥AC,连结DF交射线AC于点G.(1)当点D运动到AB的中点时,求AE的长;(2)当DF⊥AB时,求AD的长及△BDF的面积;(3)小明通过测量发现,当点D在线段AB上时,EG的长始终等于AC的一半,他想当点D运动到图(2)的情况时,EG的长始终等于AC的一半吗?若改变,说明理由,若不变,请证明EG等于AC的一半.38.问题背景:如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠D=90°.E,F分别是BC,CD上的点,且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系,并说明理由.拓展应用:如图2,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西40°的A处,舰艇乙在指挥中心南偏东80°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以50海里/小时的速度,同时舰艇乙沿北偏东50°的方向以70海里/小时的速度各自前进2小时后,在指挥中心观测到甲、乙两舰艇分别到达E,F处,两舰艇与指挥中心之间的夹角为70°,试求此时两舰艇之间的距离.第10页共12页参考答案1、B2、B3、A4、D5、B6、D7、D8、C9、D10、B11、C12、D13、A14、D15、C16、A17、D.18、C19、C20、C21、2块.22、55°23、4.24、①②③25、5∶7∶626、4;27、12cm2.28、9cm.29、1或430、2∠α+∠A=180°.31、平行且相等32、【解答】(1)解:如图1,射线CP为所求作的图形.(2)证明:∵CP是∠ACB的平分线∴∠DCE=∠BCE.在△CDE和△CBE中,,∴△DCE≌△BCE(SAS),∴BE=DE.33、1,∵EN∥AD,∴∠MAD=∠MNE,∠ADM=∠NEM.∵点M为DE的中点,∴DM=EM.在△ADM和△NEM中,∴.∴△ADM≌△NEM.∴AM=MN.∴M为AN的中点.(2)证明:如图2,∵△BAD和△BCE均为等腰直角三角形,∴AB=AD,CB=CE,∠CBE=∠CEB=45°.∵AD∥NE,∴∠DAE+∠NEA=180°.∵∠DAE=90°,∴∠NEA=90°.∴∠NEC=135°.∵A,B,E三点在同一直线上,∴∠ABC=180°﹣∠CBE=135°.∴∠ABC=∠NEC.∵△ADM≌△NEM(已证),∴AD=NE.∵AD=AB,∴AB=NE.在△ABC和△NEC中,∴△ABC≌△NEC.∴AC=NC,∠ACB=∠NCE.∴∠ACN=∠BCE=90°.∴△ACN为等腰直角三角形.(3)△ACN仍为等腰直角三角形.证明:如图3,此时A、B、N三点在同一条直线上.∵AD∥EN,∠DAB=90°,∴∠ENA=∠DAN=90°.∵∠BCE=90°,∴∠CBN+∠CEN=360°﹣90°﹣90°=180°.∵A、B、N三点在同一条直线上,∴∠ABC+∠CBN=180°.∴∠ABC=∠NEC.∵△ADM≌△NEM(已证),∴AD=NE.∵AD=AB,∴AB=NE.在△ABC和△NEC中,∴△ABC≌△NEC.∴AC=NC,∠ACB=∠NCE.∴∠ACN=∠BCE=90°.∴△ACN为等腰直角三角形.第11页共12页34、35、证:延长AD到G,使得DG=AD.(1分)在△ADC和△GDB中∴△ADC≌△GDB∴AC=BG且∠CAD=∠G∵AE=EF∴∠EFA=∠EAF∴∠G=∠EFA∵∠EFA=∠BFG∴∠G=∠BFG∴BG=BF∵AC=BG∴BF=AC36、(1)证明:连结AD.∵AB=AC∠BAC=90°D为BC的中点∴∠B=∠BAD=∠DAC=45°,AD⊥BC∴BD=AD,∠BDA=
本文标题:2016-2017年八年级上《全等三角形》期末复习练习及答案
链接地址:https://www.777doc.com/doc-7836066 .html