您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 【解析版】2014-2015年南阳市淅川县八年级下期末数学试卷
2014-2015学年河南省南阳市淅川县八年级(下)期末数学试卷一、选择题:本大题共8小题,每小题3分,共24分河南省南阳市淅川县2014-2015学年八年级下学期期末考试数学试题1.(2015春•淅川县期末)函数y=中,自变量x的取值范围是()A.x>2B.x≠2C.x≥2D.x=2考点:函数自变量的取值范围.分析:根据分母不等于0列式计算即可得解.解答:解:由题意得,x﹣2≠0,解得x≠2.故选B.点评:本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.2.(2015春•淅川县期末)在平面直角坐标系中,点(3,﹣2)关于y轴对称的点的坐标是()A.(3,2)B.(3,﹣2)C.(﹣3,2)D.(﹣3,﹣2)考点:关于x轴、y轴对称的点的坐标.分析:根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.解答:解:点(3,﹣2)关于y轴对称的点的坐标是(﹣3,﹣2),故选:D.点评:此题主要考查了关于y轴对称点的坐标,关键是掌握点的坐标的变化规律.3.(2015春•淅川县期末)如图,点D、E分别在AB、AC上,BE、CD相交于点O,AE=AD,若要使△ABE≌△ACD,则添加的一个条件不能是()A.AB=ACB.BE=CDC.∠B=∠CD.∠ADC=∠AEB考点:全等三角形的判定.分析:三角形全等条件中必须是三个元素,并且一定有一组对应边相等.在△ABE和△ACD中,已知了AE=AD,公共角∠A,因此只需添加一组对应角相等或AC=AB即可判定两三角形全等.解答:解:已知了AE=AD,公共角∠A,A、如添加AB=AC,利用SAS即可证明△ABE≌△ACD;B、如添加BE=CD,因为SSA,不能证明△ABE≌△ACD,所以此选项不能作为添加的条件;C、如添∠B=∠C利用AAS即可证明△ABE≌△ACD.D、如添加∠ADC=∠AEB,利用ASA即可证明△ABE≌△ACD;故选:B.点评:此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.4.(2011•益阳)如图,小聪在作线段AB的垂直平分线时,他是这样操作的:分别以A和B为圆心,大于AB的长为半径画弧,两弧相交于C、D,则直线CD即为所求.根据他的作图方法可知四边形ADBC一定是()A.矩形B.菱形C.正方形D.等腰梯形考点:菱形的判定;线段垂直平分线的性质.专题:压轴题.分析:根据垂直平分线的画法得出四边形ADBC四边的关系进而得出四边形一定是菱形.解答:解:∵分别以A和B为圆心,大于AB的长为半径画弧,两弧相交于C、D,∴AC=AD=BD=BC,∴四边形ADBC一定是菱形,故选:B.点评:此题主要考查了线段垂直平分线的性质以及菱形的判定,得出四边形四边关系是解决问题的关键.5.(2015•衡阳)下列命题是真命题的是()A.对角线互相平分的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线互相垂直的四边形是菱形D.对角线互相垂直的四边形是正方形考点:命题与定理.专题:计算题.分析:根据平行线四边形的判定方法对A进行判定;根据矩形的判定方法,对角线相等的平行四边形是矩形,则可对B进行判定;根据菱形的判定方法,对角线互相垂直的平行四边形是菱形,则可对C进行判定;根据正方形的判定方法,对角线互相垂直的矩形是正方形,则可对对D进行判定.解答:解:A、对角线互相平分的四边形是平行四边形,所以A选项为真命题;B、对角线相等的平行四边形是矩形,所以B选项为假命题;C、对角线互相垂直的平行四边形是菱形,所以C选项为假命题;D、对角线互相垂直的矩形是正方形,所以D选项为假命题.故选A.点评:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.6.(2015春•淅川县期末)如图,函数y=kx(k≠0)和y=ax+4(a≠0)的图象相交于点A(2,3),则不等式kx>ax+4的解集为()A.x>3B.x<3C.x>2D.x<2考点:一次函数与一元一次不等式.分析:写出直线y=kx(k≠0)在直线y=ax+4(a≠0)上方部分的x的取值范围即可;解答:解:由图可知,不等式kx>ax+4的解集为x>2;故选C.点评:本题考查了一次函数与一元一次不等式,此类题目,利用数形结合的思想求解是解题的关键.7.(2015春•淅川县期末)若点(m,n)在函数y=2x+1的图象上,则代数式4m﹣2n+1的值是()A.1B.﹣1C.2D.﹣2考点:一次函数图象上点的坐标特征.分析:先把点(m,n)代入函数y=2x+1求出2m﹣n的值,再代入所求代数式进行计算即可.解答:解:∵点(m,n)在函数y=2x+1的图象上,∴2m+1=n,即2m﹣n=﹣1,∴4m﹣2n+1=2(2m﹣n)+1=2×(﹣1)+1=﹣1.故选B.点评:本题考查的是一次函数图象上点的坐标特点,即一次函数图象上各点的坐标一定适合此函数的解析式.8.(2013•贵港)如图,点A(a,1)、B(﹣1,b)都在双曲线y=﹣上,点P、Q分别是x轴、y轴上的动点,当四边形PABQ的周长取最小值时,PQ所在直线的解析式是()A.y=xB.y=x+1C.y=x+2D.y=x+3考点:反比例函数综合题.专题:综合题;压轴题.分析:先把A点坐标和B点坐标代入反比例函数进行中可确定点A的坐标为(﹣3,1)、B点坐标为(﹣1,3),再作A点关于x轴的对称点C,B点关于y轴的对称点D,根据对称的性质得到C点坐标为(﹣3,﹣1),D点坐标为(1,3),CD分别交x轴、y轴于P点、Q点,根据两点之间线段最短得此时四边形PABQ的周长最小,然后利用待定系数法确定PQ的解析式.解答:解:分别把点A(a,1)、B(﹣1,b)代入双曲线y=﹣得a=﹣3,b=3,则点A的坐标为(﹣3,1)、B点坐标为(﹣1,3),作A点关于x轴的对称点C,B点关于y轴的对称点D,所以C点坐标为(﹣3,﹣1),D点坐标为(1,3),连结CD分别交x轴、y轴于P点、Q点,此时四边形PABQ的周长最小,设直线CD的解析式为y=kx+b,把C(﹣3,﹣1),D(1,3)分别代入,解得,所以直线CD的解析式为y=x+2.故选C.点评:本题考查了反比例函数的综合题:掌握反比例函数图象上点的坐标特征、待定系数法求一次函数的解析式;熟练运用两点之间线段最短解决有关几何图形周长最短的问题.二、填空题:每小题3分,共21分9.(2015春•淅川县期末)某种禽流感病毒的直径为0.000000012米,将这个数用科学记数法表示为1.2×10﹣8米.考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.000000012=1.2×10﹣8米,故答案为:1.2×10﹣8.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.10.(2015春•淅川县期末)某中学生物兴趣小组调查了本地区几棵古树的生长年代,记录数据如下(单位:年):200,240,220,200,210.这组数据的中位数是210.考点:中位数.分析:根据中位数的定义先把这组数据从小到大排列,再找出最中间的数即可得出答案.解答:解:把这组数据从小到大排列为:200,200,210,220,240,最中间的数是210,则这组数据的中位数是210;故答案为:210.点评:此题考查了中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.11.(2010•肇庆)某剧团甲乙两个女舞蹈队的平均身高都是1.65米,甲队身高的方差是S甲2=1.5,乙队身高的方差是S乙2=2.4,那么两队中身高更整齐的是甲队.(填“甲”或“乙”).考点:方差.分析:方差是用来衡量一组数据波动大小的量,故由甲乙的方差可作出判断.解答:解:由于S甲2<S乙2,则甲队中身高更整齐.∴两队中身高更整齐的是甲队.故填甲.点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.12.(2015春•淅川县期末)如图,PD⊥OA,PE⊥OB,点D、E为垂足,PD=7cm,当PE=7cm时,点P在∠AOB的平分线上.考点:角平分线的性质.分析:根据角平分线性质得出PD=PE,代入求出即可.解答:解:∵PD⊥OA,PE⊥OB,PD=7cm,∴当PE=PD,即PE=7cm时,P在∠AOB的平分线,故答案为:7.点评:本题考查了角平分线性质的应用,注意:角平分线上的点到角的两边的距离相等.13.(2015春•淅川县期末)如图,在▱ABCD中,对角线AC与BD相交于点O,则图中共有4对全等三角形.考点:平行四边形的性质;全等三角形的判定.分析:可以推出△ABD≌△CDB,△ABC≌△CDA,△AOB≌△COD,△AOD≌△COB.解答:解:∵在△ABD和△CDB中,∴△ABD≌△CDB(SSS),∴∠ADB=∠CBD,∠ABD=∠BDC,∵在△ABC和△CDA中,∴△ABC≌△CDA(SSS),∴∠DAC=∠BCA,∠ACD=∠BAC,∵在△AOB和△COD中,∴△AOB≌△COD(ASA),∵在△AOD和△COB中,∴△AOD≌△COB(ASA),故答案为:4.点评:此题主要考查了全等三角形的判定与性质,关键是判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.14.(2015春•淅川县期末)已知反比例函数y=(k≠0),当x>0时,y随着x的增大而增大,试写出一个符合条件的整数k=﹣1(答案不唯一).考点:反比例函数的性质.专题:开放型.分析:直接根据反比例函数的性质写出符合条件的k的值即可.解答:解:∵反比例函数y=(k≠0),当x>0时,y随着x的增大而增大,∴k<0,∴k可以为﹣1.故答案为:﹣1(答案不唯一).点评:本题考查的是反比例函数的性质,熟知反比例函数y=(k≠0)的图象是双曲线,当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大是解答此题的关键.15.(2015春•淅川县期末)如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一条长为a个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A→B→C→D→A→…的规律紧绕在四边形ABCD的边上,当a=12时,小聪聪一眼就看出细线另一端所在位置的点的坐标是(﹣1,1),那么当a=2015时,细线另一端所在位置的点的坐标是(﹣1,﹣2).考点:规律型:点的坐标.分析:根据点的坐标求出四边形ABCD的周长,然后求出另一端是绕第几圈后的第几个单位长度,从而确定答案.解答:解:∵A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),∴AB=1﹣(﹣1)=2,BC=1﹣(﹣2)=3,CD=1﹣(﹣1)=2,DA=1﹣(﹣2)=3,∴绕四边形ABCD一周的细线长度为
本文标题:【解析版】2014-2015年南阳市淅川县八年级下期末数学试卷
链接地址:https://www.777doc.com/doc-7836315 .html