您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 【解析版】2014-2015学年长春市绿园区八年级下期末数学试卷
2014-2015学年吉林省长春市绿园区八年级(下)期末数学试卷一.选择题(每小题3分,共24分)1.使分式有意义,则x的取值范围是()A.x≠1B.x=1C.x≤1D.x≥12.用科学记数法表示﹣0.0000064记为()A.﹣64×10﹣7B.﹣0.64×10﹣4C.﹣6.4×10﹣6D.﹣640×10﹣83.下列变形正确的是()A.=x3B.=C.=x+yD.=﹣14.若一次函数y=(m﹣3)x+5的函数值y随x的增大而增大,则()A.m>0B.m<0C.m>3D.m<35.点P(2m﹣1,3)在第二象限,则m的取值范围是()A.m>B.m≥C.m<D.m≤6.甲、乙两同学近期5次百米跑测试成绩的平均数相同,甲同学成绩的方差是5,乙同学成绩的方差是2.1,则对他们测试成绩的稳定性判断正确的是()A.甲的成绩稳定B.乙的成绩较稳定C.甲、乙成绩的稳定性相同D.甲、乙成绩的稳定性无法比较7.已知反比例函数y=,在其图象所在的每个象限内,y随x的增大而减小,则k的值可以是()A.﹣1B.1C.2D.38.如图,在▱ABCD中,CE⊥AB,点E为垂足,如果∠D=55°,则∠BCE=()A.55°B.35°C.25°D.30°二.填空题(每小题3分,共18分)9.计算:()﹣2﹣(﹣2)0=.10.如图,▱ABCD的对角线AC与BD相交于点O,AB⊥AC,若AB=4,AC=6,则BD=.11.在平面直角坐标系中,将直线y=3x﹣2向上平移3个单位长度后,所得直线的关系式为.12.如图,在▱ABCD中,AB=4cm,BC=7cm,∠ABC的平分线交AD于点E,交CD的延长线于点F,则DF=.13.如图,在菱形ABCD中,∠B=60°,AB=3,则以AC为边长的正方形ACEF的周长为.14.如图,已知一次函数y=ax+b和正比例函数y=kx的图象交于点P,则根据图象可得二元一次方程组的解是.三.解答题(共78分)15.计算:•.16.先化简,再求值:(1﹣)÷,其中x=3.17.学校计划选购甲、乙两种图书.已知甲图书的单价是乙图书单价的1.6倍,用800元单独购买甲种图书比单独购买乙种图书要少10本.求乙种图书的单价为多少元?18.如图,一次函数y=kx+b的图象经过A(2,4)、B(0,2)两点,与x轴交于点C.(1)求k、b的值;(2)求△AOC的面积.19.如图,在矩形ABCD中,对角线AC、BD相交于点O,过点D作DE∥AC,交BC的延长线于点E.求证:BD=DE.20.如图,已知平行四边形ABCD中,对角线AC的垂直平分线EF交AD于点F,交BC于点E,试判断:四边形AECF是什么特殊四边形,并说明理由.21.如图,在平面直角坐标系中,正方形ABCD的顶点A、B的坐标分别为A(1,0),B(0,2),反比例函数y=(k≠0)的图象经过点D.(1)求反比例函数的解析式;(2)将正方形ABCD沿x轴向右平移m个单位长度后,使点B落在反比例函数y=(k≠0)的图象上,求m的值.22.国家规定“中小学生每天在校体育活动时间(t)不低于1小时”,为此某市就“你每天在校体育活动时间是多少”的问题随即调查了辖区260名初中生,根据调查结果绘制成的统计图(部分),其中分组情况如下、A组:t<0.5小时B组:0.5小时≤t<1小时C组:1小时≤t<1.5小时D组:t≥1.5小时根据上述信息解答下列问题:(1)C组的人数是.(2)本次调查数据的中位数落在组内.(3)若该辖区约有13000名初中生,其中达到国家规定体育活动时间的约有多少人?23.如图所示,在四边形ABCD中,AD∥BC,AD=24cm,BC=30cm,点P从A向点D以1cm/s的速度运动,到点D即停止.点Q从点C向点B以2cm/s的速度运动,到点B即停止.直线PQ将四边形ABCD截得两个四边形,分别为四边形ABQP和四边形PQCD,则当P,Q两点同时出发,几秒后所截得两个四边形中,其中一个四边形为平行四边形?24.已知,A、B两市相距280千米,甲车从A市前往B市运送物资,行驶2.5小时在M地汽车M地汽车出现故障,立即通知技术人员乘乙车从A市赶来维修(通知时间忽略不计).乙车到达M地后又经过30分钟修好甲车后原路返回,同时甲车以原速1.5倍的速度前往B市.如图是甲、乙两车距A市的路程y(千米)与甲车行驶时间x(小时)之间的函数图象,结合图象回答下列问题:(1)甲车提速后的速度是千米/小时,乙车的速度是千米/小时,点C的坐标为;(2)求甲车修好后从M地前往B市时y与x的函数关系式;(3)求乙车返回到A市时,甲车距离A市多少千米?2014-2015学年吉林省长春市绿园区八年级(下)期末数学试卷参考答案与试题解析一.选择题(每小题3分,共24分)1.使分式有意义,则x的取值范围是()A.x≠1B.x=1C.x≤1D.x≥1考点:分式有意义的条件.分析:根据分式有意义的条件:分母不等于0,即可求解.解答:解:根据题意得:x﹣1≠0,解得:x≠1.故选:A.点评:本题主要考查了分式有意义的条件,正确理解条件是解题的关键.2.用科学记数法表示﹣0.0000064记为()A.﹣64×10﹣7B.﹣0.64×10﹣4C.﹣6.4×10﹣6D.﹣640×10﹣8考点:科学记数法—表示较小的数.分析:小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:﹣0.0000064=﹣6.4×10﹣6.故选C.点评:本题考查用科学记数法表示较小的数.一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.下列变形正确的是()A.=x3B.=C.=x+yD.=﹣1考点:分式的基本性质.分析:根据分式的基本性质进行约分即可.解答:解:A、结果为x4,故本选项错误;B、不能约分,故本选项错误;C、不能约分,故本选项错误;D、结果是﹣1,故本选项正确;故选D.点评:本题考查了分式的基本性质的应用,主要考查学生对分式的基本性质的理解能力和应用能力.4.若一次函数y=(m﹣3)x+5的函数值y随x的增大而增大,则()A.m>0B.m<0C.m>3D.m<3考点:一次函数图象与系数的关系.分析:直接根据一次函数的性质可得m﹣3>0,解不等式即可确定答案.解答:解:∵一次函数y=(m﹣3)x+5中,y随着x的增大而增大,∴m﹣3>0,解得:m>3.故选:C.点评:本题考查的是一次函数的性质,熟知一次函数y=kx+b(k≠0)中,当k<0时,y随x的增大而减小是解答此题的关键.5.点P(2m﹣1,3)在第二象限,则m的取值范围是()A.m>B.m≥C.m<D.m≤考点:点的坐标;解一元一次不等式.分析:点在第二象限的条件是:横坐标是负数,纵坐标是正数.解答:解:∵点P(2m﹣1,3)在第二象限,∴2m﹣1<0,m<.故选C.点评:坐标平面被两条坐标轴分成了四个象限,每个象限内的点的坐标符号各有特点.该知识点是中考的常考点,常与不等式、方程结合起来求一些字母的取值范围,比如本题中求m的取值范围.6.甲、乙两同学近期5次百米跑测试成绩的平均数相同,甲同学成绩的方差是5,乙同学成绩的方差是2.1,则对他们测试成绩的稳定性判断正确的是()A.甲的成绩稳定B.乙的成绩较稳定C.甲、乙成绩的稳定性相同D.甲、乙成绩的稳定性无法比较考点:方差.分析:根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据波动越小,数据越稳定.解答:解:由于S甲2>S乙2,则成绩较稳定的同学是乙.故选:B.点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.7.已知反比例函数y=,在其图象所在的每个象限内,y随x的增大而减小,则k的值可以是()A.﹣1B.1C.2D.3考点:反比例函数的性质.分析:由于反比例函数y=的图象在每个象限内y的值随x的值增大而减小,可知比例系数为正数,据此列出不等式解答即可.解答:解:∵反比例函数y=,的图象在每个象限内y的值随x的值增大而减小,∴1﹣k>0,解得k<1.故﹣1符合要求.故选A.点评:本题考查了反比例函数的性质,要知道:(1)k>0,反比例函数图象在一、三象限,在每个象限内y的值随x的值增大而减小;(2)k<0,反比例函数图象在第二、四象限内,在每个象限内y的值随x的值增大而增大.8.如图,在▱ABCD中,CE⊥AB,点E为垂足,如果∠D=55°,则∠BCE=()A.55°B.35°C.25°D.30°考点:平行四边形的性质.分析:由▱ABCD中,∠D=55°,根据平行四边形的对角相等,∠B的度数,又由CE⊥AB,即可求得∠BCE的度数.解答:解:∵四边形ABCD是平行四边形,∴∠B=∠D=55°,∵CE⊥AB,∴∠BEC=90°,∴∠BCE=90°﹣∠B=35°.故选B.点评:此题考查了平行四边形的性质.此题比较简单,注意掌握数形结合思想的应用.二.填空题(每小题3分,共18分)9.计算:()﹣2﹣(﹣2)0=3.考点:负整数指数幂;零指数幂.分析:根据负整数指数幂和零整数指数幂计算即可.解答:解:()﹣2﹣(﹣2)0=4﹣1=3.故答案为:3.点评:此题考查负整数指数幂和零整数指数幂,关键是根据负整数指数幂和零整数指数幂计算.10.如图,▱ABCD的对角线AC与BD相交于点O,AB⊥AC,若AB=4,AC=6,则BD=10.考点:平行四边形的性质.分析:利用平行四边形的性质和勾股定理易求BO的长,进而可求出BD的长.解答:解:∵▱ABCD的对角线AC与BD相交于点O,∴BO=DO,AO=CO,∵AB⊥AC,AB=4,AC=6,∴BO==5,∴BD=2BO=10,故答案为:10.点评:本题考查了平行四边形的性质以及勾股定理的运用,是中考常见题型,比较简单.11.在平面直角坐标系中,将直线y=3x﹣2向上平移3个单位长度后,所得直线的关系式为y=3x+1.考点:一次函数图象与几何变换.分析:根据“上加下减、左加右减”的原则进行解答即可.解答:解:将直线y=3x﹣2向上平移3个单位长度后,所得直线的关系式为y=3x﹣2+3=3x+1,故答案为:y=3x+1.点评:本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.12.如图,在▱ABCD中,AB=4cm,BC=7cm,∠ABC的平分线交AD于点E,交CD的延长线于点F,则DF=3cm.考点:平行四边形的性质.分析:利用平行四边形的对边相等且平行以及平行线的基本性质求解即可.解答:解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ABE=∠CFE,∵∠ABC的平分线交AD于点E,∴∠ABE=∠CBF,∴∠CBF=∠CFB,∴CF=CB=7cm,∴DF=CF﹣CD=7﹣4=3cm,故答案为:3cm.点评:本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.13.如图,在菱形ABCD中,∠B=60°,AB=3,则以AC为边长的正方形ACEF的周长为12.考点:菱形的性质;正方形的性质.分析:根据菱形得出AB=BC,再由∠B=60°得出等边三角形ABC,进而可求出AC长,再根据正方形的性质得出AF=EF=EC=AC=3,继而可求出正方形ACEF的周长.解答:解:∵四边形ABCD是菱形,∴AB=BC,∵∠B=60°,∴△ABC是等边三角形,∴AC=AB=3,∴正方形ACEF的周长是AC+CE+EF+AF=4×3=12,故答案为12.点评:本题考查了菱形性质,正方形性质,等边三角形的性质和判定的应用,解题的关键是求出AC的长.14.如图,已知一次函数y=ax+b和正比例函数y=kx的图象交于点P,则根据图象可
本文标题:【解析版】2014-2015学年长春市绿园区八年级下期末数学试卷
链接地址:https://www.777doc.com/doc-7836396 .html