您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 【解析版】金桥中学2015届九年级上第一次月考数学试卷
辽宁省营口市大石桥市金桥中学2015届九年级上学期第一次月考数学试卷一、选择题(答案唯一正确,每题3分,共24分)1.已知m是方程x2﹣x﹣1=0的一个根,则代数式m2﹣m的值等于()A.1B.0C.﹣1D.22.若α,β是方程x2+2x﹣2005=0的两个实数根,则α2+3α+β的值为()A.2005B.2003C.﹣2005D.40103.若关于x的一元二次方程的两个根为x1=1,x2=2,则这个方程是()A.x2+3x﹣2=0B.x2﹣3x+2=0C.x2﹣2x+3=0D.x2+3x+2=04.已知关于x的方程x2﹣x+k2=0有两个不相等的实数根,那么k的最大整数值是()A.﹣2B.﹣1C.0D.15.某市2004年底已有绿化面积300公顷,经过两年绿化,绿化面积逐年增加,到2006年底增加到363公顷.设绿化面积平均每年的增长率为x,由题意,所列方程正确的是()A.300(1+x)=363B.300(1+x)2=363C.300(1+2x)=363D.363(1﹣x)2=3006.下列函数不属于二次函数的是()A.y=(x﹣1)(x+2)B.y=(x+1)2C.y=1﹣x2D.y=2(x+3)2﹣2x27.抛物线y=(x+2)2+1的顶点坐标是()A.B.(﹣2,1)C.D.(﹣2,﹣1)8.下列说法错误的是()A.二次函数y=3x2中,当x>0时,y随x的增大而增大B.二次函数y=﹣6x2中,当x=0时,y有最大值0C.a越大图象开口越小,a越小图象开口越大D.不论a是正数还是负数,抛物线y=ax2(a≠0)的顶点一定是坐标原点二、填空题(每题3分,共24分)9.若关于x的方程2x2﹣3x+c=0的一个根是1,则另一个根是.10.一元二次方程x2﹣3x﹣2=0的解是.11.如果=63,那么a+b的值为.12.方程3x2﹣ax+a﹣3=0“只有”一个正根,则的值是.13.若抛物线y=x2﹣2x﹣2的顶点为A,与y轴的交点为B,则过A,B两点的直线的解析式为.14.若抛物线y=x2﹣bx+9的顶点在x轴上,则b的值为.15.抛物线y=x2﹣2x﹣3关于x轴对称的抛物线的解析式为.16.如图所示,在同一坐标系中,作出①y=3x2②y=x2③y=x2的图象,则图象从里到外的三条抛物线对应的函数依次是(填序号).三、解答题(17题20分,18题15分、19题10分,20题10分,共32分)17.选择适当方法解下列方程:(1)(x﹣5)2=16x2﹣4x+1=0(3)x2﹣2x﹣3=0(4)x2+5x+3=0.18.一个二次函数,它的对称轴是y轴,顶点是原点,且经过点(1,﹣3).(1)写出这个二次函数的解析式;图象在对称轴右侧部分,y随x的增大怎样变化?(3)指出这个函数有最大值还是最小值,并求出这个值.19.已知:x1、x2是关于x的方程x2+x+a2=0的两个实数根且(x1+2)(x2+2)=11,求a的值.20.在平面直角坐标系中,△AOB的位置如图所示,已知∠AOB=90°,AO=BO,点A的坐标为(﹣3,1).(1)求点B的坐标;求过A,O,B三点的抛物线的解析式;(3)设点B关于抛物线的对称轴l的对称点为B1,求△AB1B的面积.21.已知一元二次方程x2﹣4x+k=0有两个不相等的实数根(1)求k的取值范围;如果k是符合条件的最大整数,且一元二次方程x2﹣4x+k=0与x2+mx﹣1=0有一个相同的根,求此时m的值.22.已知a、b、c分别是△ABC中∠A、∠B、∠C所对的边,且关于x的方程(c﹣b)x2+2(b﹣a)x+(a﹣b)=0有两个相等的实数根,试判断△ABC的形状.23.已知抛物线y=ax2+6x﹣8与直线y=﹣3x相交于点A(1,m).(1)求抛物线的解析式;请问(1)中的抛物线经过怎样的平移就可以得到y=ax2的图象.24.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.(1)现该商场要保证每天盈利6000元,同时又要顾客得到实惠,那么每千克应涨价多少元?若该商场单纯从经济角度看,每千克这种水果涨价多少元,能使商场获利最多?辽宁省营口市大石桥市金桥中学2015届九年级上学期第一次月考数学试卷参考答案与试题解析一、选择题(答案唯一正确,每题3分,共24分)1.已知m是方程x2﹣x﹣1=0的一个根,则代数式m2﹣m的值等于()A.1B.0C.﹣1D.2考点:一元二次方程的解;代数式求值.专题:计算题.分析:一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值;即用这个数代替未知数所得式子仍然成立;将m代入原方程即可求m2﹣m的值.解答:解:把x=m代入方程x2﹣x﹣1=0可得:m2﹣m﹣1=0,即m2﹣m=1;故选A.点评:此题应注意把m2﹣m当成一个整体.利用了整体的思想.2.若α,β是方程x2+2x﹣2005=0的两个实数根,则α2+3α+β的值为()A.2005B.2003C.﹣2005D.4010考点:根与系数的关系;一元二次方程的解.专题:整体思想.分析:根据一元二次方程根的定义和根与系数的关系求解则可.设x1,x2是关于x的一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的两个实数根,则x1+x2=,x1x2=.而α2+3α+β=α2+2α+(α+β),即可求解.解答:解:α,β是方程x2+2x﹣2005=0的两个实数根,则有α+β=﹣2.α是方程x2+2x﹣2005=0的根,得α2+2α﹣2005=0,即:α2+2α=2005.所以α2+3α+β=α2+2α+(α+β)=α2+2α﹣2=2005﹣2=2003.故选B.点评:本题考查了根与系数的关系与方程根的定义,要求能将根与系数的关系、方程根的定义与代数式变形相结合解题.3.若关于x的一元二次方程的两个根为x1=1,x2=2,则这个方程是()A.x2+3x﹣2=0B.x2﹣3x+2=0C.x2﹣2x+3=0D.x2+3x+2=0考点:根与系数的关系.分析:解决此题可用验算法,因为两实数根的和是1+2=3,两实数根的积是1×2=2.解题时检验两根之和是否为3及两根之积是否为2即可.解答:解:两个根为x1=1,x2=2则两根的和是3,积是2.A、两根之和等于﹣3,两根之积等于﹣2,所以此选项不正确;B、两根之和等于3,两根之积等于2,所以此选项正确;C、两根之和等于2,两根之积等于3,所以此选项不正确;D、两根之和等于﹣3,两根之积等于2,所以此选项不正确,故选:B.点评:验算时要注意方程中各项系数的正负.4.已知关于x的方程x2﹣x+k2=0有两个不相等的实数根,那么k的最大整数值是()A.﹣2B.﹣1C.0D.1考点:根的判别式.分析:根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围.解答:解:∵a=1,b=﹣,c=k2,方程有两个不相等的实数根∴△=b2﹣4ac=2﹣4k2=1﹣4k>0∴k<∴k的最大整数为0.故选C.点评:总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.5.某市2004年底已有绿化面积300公顷,经过两年绿化,绿化面积逐年增加,到2006年底增加到363公顷.设绿化面积平均每年的增长率为x,由题意,所列方程正确的是()A.300(1+x)=363B.300(1+x)2=363C.300(1+2x)=363D.363(1﹣x)2=300考点:由实际问题抽象出一元二次方程.专题:增长率问题.分析:知道2004年的绿化面积经过两年变化到2006,绿化面积成为363,设绿化面积平均每年的增长率为x,由题意可列出方程.解答:解:设绿化面积平均每年的增长率为x,300(1+x)2=363.故选B.点评:本题考查的是个增长率问题,关键是知道增长前的面积经过两年变化增长后的面积可列出方程.6.下列函数不属于二次函数的是()A.y=(x﹣1)(x+2)B.y=(x+1)2C.y=1﹣x2D.y=2(x+3)2﹣2x2考点:二次函数的定义.分析:整理一般形式后根据二次函数的定义判定即可解答.解答:解:A、整理为y=x2+x﹣3,是二次函数,不合题意;B、整理为y=x2+x+,是二次函数,不合题意;C、整理为y=﹣x2+1,是二次函数,不合题意;D、整理为y=12x+18,是一次函数,符合题意.故选D.点评:本题考查二次函数的定义.7.抛物线y=(x+2)2+1的顶点坐标是()A.B.(﹣2,1)C.D.(﹣2,﹣1)考点:二次函数的性质.分析:已知解析式是抛物线的顶点式,根据顶点式的坐标特点,直接写出顶点坐标.解答:解:因为y=(x+2)2+1是抛物线的顶点式,由顶点式的坐标特点知,顶点坐标为(﹣2,1).故选B.点评:考查顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),对称轴是x=h.要掌握顶点式的性质.8.下列说法错误的是()A.二次函数y=3x2中,当x>0时,y随x的增大而增大B.二次函数y=﹣6x2中,当x=0时,y有最大值0C.a越大图象开口越小,a越小图象开口越大D.不论a是正数还是负数,抛物线y=ax2(a≠0)的顶点一定是坐标原点考点:二次函数的性质.分析:抛物线y=ax2(a≠0)是最简单二次函数形式.顶点是原点,对称轴是y轴,a>0时,开口向上,a<0时,开口向下;开口大小与|a|有关.解答:解:A、二次函数y=3x2图象开口向上,对称轴是y轴,当x>0时,y随x的增大而增大,正确;B、二次函数y=﹣6x2中开口向下,顶点(0,0),故当x=0时,y有最大值0,正确;C、|a|越大,图象开口越小,|a|越小图象开口越大,错误;D、抛物线y=ax2的顶点就是坐标原点,正确.故选C.点评:此题考查了二次函数的性质:增减性(单调性),最值,开口大小以及顶点坐标.二、填空题(每题3分,共24分)9.若关于x的方程2x2﹣3x+c=0的一个根是1,则另一个根是.考点:一元二次方程的解;根与系数的关系.专题:方程思想.分析:根据根与系数的关系列出关于另一根x的方程,解方程即可.解答:解:∵关于x的方程2x2﹣3x+c=0的一个根是1,∴x=1满足关于x的方程2x2﹣3x+c=0,1+x=,解得,x=;故答案是:.点评:本题考查了一元二次方程的解、根与系数的关系.解答该题时,一定要弄清楚一元二次方程的根与系数的关系x1+x2=﹣中的a、b的意义.10.一元二次方程x2﹣3x﹣2=0的解是x=.考点:解一元二次方程-公式法.专题:计算题.分析:找出a,b,c的值,计算出根的判别式的值大于0,代入求根公式即可求出解.解答:解:这里a=1,b=﹣3,c=﹣2,∵△=9+8=17,∴x=,故答案为:x=.点评:此题考查了解一元二次方程﹣公式法,熟练掌握求根公式是解本题的关键.11.如果=63,那么a+b的值为±4.考点:平方差公式.分析:将2a+2b看做整体,用平方差公式解答,求出2a+2b的值,进一步求出(a+b)的值.解答:解:∵=63,∴2﹣12=63,∴2=64,2a+2b=±8,两边同时除以2得,a+b=±4.点评:本题考查了平方差公式,整体思想的利用是解题的关键,需要同学们细心解答,把看作一个整体.12.方程3x2﹣ax+a﹣3=0“只有”一个正根,则的值是4﹣a.考点:根的判别式;二次根式的性质与化简;根与系数的关系.分析:只有一个正根,即该一元二次方程有一正一负两个不相等的实数根,所以满足两根之积小于0且判别式小于0,可求出a的取值范围,解答:解:由题意可知该方程有一正一负两个不相等的实数根,所以可设方程的两根为x1和x2,则由题意可知x1x2<0且△>0,即,解得a<3,∴==|a﹣4|=4﹣a,故答案为:4﹣a.点评:本题主要考查一元二次方程的判别式及根与系数的关系,由条件判断出a的取值范围是解题的关键.13.若抛物线y=x2﹣2x﹣2
本文标题:【解析版】金桥中学2015届九年级上第一次月考数学试卷
链接地址:https://www.777doc.com/doc-7836495 .html