您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 【解析版】信丰县西牛中学2014-2015年八年级下期中数学试卷
江西省赣州市信丰县西牛中学2014-2015学年八年级下学期期中数学试卷一、选择题(每题3分,共18分)1.(3分)使二次根式有意义的x的取值范围是()A.x≠2B.x>2C.x≤2D.x≥22.(3分)下列条件中,不能判断△ABC为直角三角形的是()A.a2=1,b2=2,c2=3B.a:b:c=3:4:5C.∠A+∠B=∠CD.∠A:∠B:∠C=3:4:53.(3分)下列各式计算正确的是()A.B.(a>0)C.=×D.4.(3分)如图,在矩形ABCD中,对角线AC,BD交于点O.已知∠AOB=60°,AC=16,则图中长度为8的线段有()A.2条B.4条C.5条D.6条5.(3分)如图,四边形ABCD是平行四边形,∠D=120°,∠CAD=32°,则∠ABC、∠CAB的度数分别为()A.28°,120°B.120°,28°C.32°,120°D.120°,32°6.(3分)如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90°B.60°C.45°D.30°二、填空题(每题3分,共24分)7.(3分)计算=.8.(3分)如图,已知▱ABCD中,AB=4,BC=6,BC边上的高AE=2,则DC边上的高AF的长是.9.(3分)已知a、b为两个连续的整数,且,则a+b=.10.(3分)一个三角形的三边长分别为,则它的周长是cm.11.(3分)如图,菱形ABCD的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD的周长是.12.(3分)如图,一根长18cm的筷子置于底面直径为5cm.高为12cm圆柱形水杯中,露在水杯外面的长度hcm,则h的取值范围是.13.(3分)如图,▱ABCD中,EF过对角线的交点O,AB=4,AD=3,OF=1.3,则四边形BCEF的周长为.14.(3分)已知一个直角三角形的两边长分别为3和4,则这个三角形的周长是.三、(本大题共4小题,每题6分,共24分)15.(6分)计算:+2﹣(﹣)16.(6分)若直角三角形的两直角边长为a、b,且满足+|b﹣4|=0,求该直角三角形的斜边长.17.(6分)如图,已知在四边形ABCD中,AB=20cm,BC=15cm,CD=7cm,AD=24cm,∠ABC=90°.猜想∠A与∠C关系并加以证明.18.(6分)如图,正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫格点,以格点为顶点按下列要求画图:(1)在图中画一条线段MN,使MN=;(2)在图中画一个三边长均为无理数,且各边都不相等的直角△DEF.四、(本大题共4小题,每题8分,共32分)19.(8分)先化简,再求值:(a﹣1)÷(a2+1),其中a=﹣1.20.(8分)一个三角形的三边长分别为、、(1)求它的周长(要求结果化简);(2)请你给一个适当的x值,使它的周长为整数,并求出此时三角形周长的值.21.(8分)如图,▱ABCD中,AB⊥AC,AB=1,BC=.对角线AC,BD相交于点O,将直线AC绕点O顺时针旋转,分别交BC,AD于点E,F.(1)试说明在旋转过程中,线段AF与EC总保持相等;(2)在旋转过程中,四边形BEDF可能是菱形吗?如果不能,请说明理由;如果能,请直接写出此时AC绕点O顺时针旋转的度数.22.(8分)如图所示,一根长2.5米的木棍(AB),斜靠在与地面(OM)垂直的墙(ON)上,此时OB的距离为0.7米,设木棍的中点为P.若木棍A端沿墙下滑,且B端沿地面向右滑行.(1)如果木棍的顶端A沿墙下滑0.4米,那么木棍的底端B向外移动多少距离?(2)请判断木棍滑动的过程中,点P到点O的距离是否变化,并简述理由.五、(本大题共1小题,共10分)23.(10分)如图,四边形ABCD是正方形,点G是BC边上任意一点,DE⊥AG于点E,BF∥DE且交AG于点F.(1)求证:AE=BF;(2)如图1,连接DF、CE,探究线段DF与CE的关系并证明;(3)如图2,若AB=,G为CB中点,连接CF,直接写出四边形CDEF的面积为.六、(本大题共1小题,共12分)24.(12分)已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.(1)如图1,连接AF、CE.求证四边形AFCE为菱形,并求AF的长;(2)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,①已知点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.②若点P、Q的运动路程分别为a、b(单位:cm,ab≠0),已知A、C、P、Q四点为顶点的四边形是平行四边形,求a与b满足的数量关系式.江西省赣州市信丰县西牛中学2014-2015学年八年级下学期期中数学试卷参考答案与试题解析一、选择题(每题3分,共18分)1.(3分)使二次根式有意义的x的取值范围是()A.x≠2B.x>2C.x≤2D.x≥2考点:二次根式有意义的条件.专题:计算题.分析:利用当二次根式有意义时,被开方式为非负数,得到有关x的一元一次不等式,解之即可得到本题答案.解答:解:∵二次根式有意义,∴x﹣2≥0,解得:x≥2,故选D.点评:本题考查了二次根式有意义的条件,此类考题相对比较简单,但从近几年的2015届中考看,几乎是一个必考点.2.(3分)下列条件中,不能判断△ABC为直角三角形的是()A.a2=1,b2=2,c2=3B.a:b:c=3:4:5C.∠A+∠B=∠CD.∠A:∠B:∠C=3:4:5考点:勾股定理的逆定理;三角形内角和定理.分析:根据三角形内角和定理,以及勾股定理逆定理分别进行分析可得答案.解答:解:A、可利用勾股定理逆定理判定△ABC为直角三角形,故此选项不合题意;B、根据勾股定理的逆定理可判断△ABC是直角三角形,故此选项不合题意;C、根据三角形内角和定理可以计算出∠A=90°,△ABC为直角三角形,故此选项不合题意;D、根据三角形内角和定理可以计算出∠A=45°,∠B=60°,∠C=75°,可判定△ABC不是直角三角形,故此选项符合题意;故选:D.点评:此题主要考查了勾股定理逆定理,判断三角形是否为直角三角形可利用勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.3.(3分)下列各式计算正确的是()A.B.(a>0)C.=×D.考点:二次根式的加减法;二次根式的性质与化简;二次根式的乘除法.分析:根据二次根式的化简,二次根式的乘除及加减运算,分别进行各选项的判断即可.解答:解:A、﹣2=﹣,运算正确,故本选项正确;B、=2a,原式计算错误,故本选项错误;C、=×=6,原式计算错误,故本选项错误;D、÷=,原式计算错误,故本选项错误;故选A.点评:本题考查了二次根式的混合运算及二次根式的化简,属于基础题.4.(3分)如图,在矩形ABCD中,对角线AC,BD交于点O.已知∠AOB=60°,AC=16,则图中长度为8的线段有()A.2条B.4条C.5条D.6条考点:矩形的性质;等边三角形的判定与性质.分析:因为矩形的对角线相等且互相平分,所以AO=BO=CO=DO,已知∠AOB=60°,所以AB=AO,从而CD=AB=AO.从而可求出线段为8的线段.解答:解:∵在矩形ABCD中,AC=16,∴AO=BO=CO=DO=×16=8.∵AO=BO,∠AOB=60°,∴AB=AO=8,∴CD=AB=8,∴共有6条线段为8.故选D.点评:本题考查矩形的性质,矩形的对角线相等且互相平分,以及等边三角形的判定与性质.5.(3分)如图,四边形ABCD是平行四边形,∠D=120°,∠CAD=32°,则∠ABC、∠CAB的度数分别为()A.28°,120°B.120°,28°C.32°,120°D.120°,32°考点:平行四边形的性质.分析:由四边形ABCD是平行四边形,易得∠B=∠D,∠BAD+∠D=180°.即可求得∠ABC、∠CAB的度数.解答:解:∵四边形ABCD是平行四边形,∴∠B=∠D,AB∥CD,∴∠BAD+∠D=180°,∵∠D=120°,∠CAD=32°,∴∠ABC=∠D=120°,∠BAD=60°,∴∠CAB=∠BAD﹣∠CAD=60°﹣32°=28°.故选B.点评:此题考查了平行四边形的性质:平行四边形的对边平行,对角相等,熟记性质是解题的关键.6.(3分)如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90°B.60°C.45°D.30°考点:勾股定理.分析:根据勾股定理即可得到AB,BC,AC的长度,进行判断即可.解答:解:根据勾股定理可以得到:AC=BC=,AB=.∵()2+()2=()2.∴AC2+BC2=AB2.∴△ABC是等腰直角三角形.∴∠ABC=45°.故选C.点评:本题考查了勾股定理,判断△ABC是等腰直角三角形是解决本题的关键.二、填空题(每题3分,共24分)7.(3分)计算=2.考点:二次根式的性质与化简.分析:直接利用二次根式的性质化简求出即可.解答:解:=2.故答案为:2.点评:此题主要考查了二次根式的化简与性质,正确化简二次根式是解题关键.8.(3分)如图,已知▱ABCD中,AB=4,BC=6,BC边上的高AE=2,则DC边上的高AF的长是3.考点:平行四边形的性质.分析:根据平行四边形的对边相等,可得CD=AB=6,又因为S▱ABCD=BC•AE=CD•AF,所以求得DC边上的高AF的长是3.解答:解:∵四边形ABCD是平行四边形,∴BC=AD=6,∴S▱ABCD=BC•AE=CD•AF=6×2=12,∴AF=3.∴DC边上的高AF的长是3.故答案为3.点评:此题考查了平行四边形的性质:平行四边形的对边相等.还要注意平行四边形的面积的求解方法:底乘以高.9.(3分)已知a、b为两个连续的整数,且,则a+b=11.考点:估算无理数的大小.分析:根据无理数的性质,得出接近无理数的整数,即可得出a,b的值,即可得出答案.解答:解:∵,a、b为两个连续的整数,∴<<,∴a=5,b=6,∴a+b=11.故答案为:11.点评:此题主要考查了无理数的大小,得出比较无理数的方法是解决问题的关键.10.(3分)一个三角形的三边长分别为,则它的周长是cm.考点:二次根式的应用.分析:三角形的周长等于三边之和,即++,化简再合并同类二次根式.解答:解:++=2+2+3=5+2(cm).点评:二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.11.(3分)如图,菱形ABCD的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD的周长是4.考点:菱形的性质.分析:在Rt△AOD中求出AD的长,再由菱形的四边形等,可得菱形ABCD的周长.解答:解:∵四边形ABCD是菱形,∴AO=AC=3,DO=BD=2,AC⊥BD,在Rt△AOD中,AD==,∴菱形ABCD的周长为4.故答案为:4.点评:本题考查了菱形的性质,解答本题的关键是掌握菱形的对角线互相垂直且平分.12.(3分)如图,一根长18cm的筷子置于底面直径为5cm.高为12cm圆柱形水杯中,露在水杯外面的长度hcm,则h的取值范围是5cm≤h≤6cm.考点:勾股定理的应用.分析:根据杯子内筷子的长度的取值范围得出杯子外面长度的取值范围,即可得出答案.解答:解:∵将一根长为18cm的筷子,置于底面直径为5cm,高为12cm的圆柱形水杯中,∴在杯子中筷子最短是等于杯子的高,最长是等于杯子斜边长度,∴当杯子中筷子最短是等于杯子的高时,x=12,最长时等于杯子斜边长度是:x==13,∴h的取值范围是:(18﹣13)cm≤h≤(18﹣12)cm,即5cm≤h≤6cm.故答案为:5cm≤h≤6cm.点评:此题主要考查了勾股定理的应用,正确得出杯子内筷子的取值范围是解决问题的关键.13.(3分)如图,▱ABCD中,EF
本文标题:【解析版】信丰县西牛中学2014-2015年八年级下期中数学试卷
链接地址:https://www.777doc.com/doc-7836607 .html