您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 【解析版】章丘市枣园中学2014-2015年八年级上期中数学试卷
2014-2015学年山东省济南市章丘市枣园中学八年级(上)期中数学试卷一、选择(3*15=45分)1.已知油箱中有油25升,每小时耗油5升,则剩油量P(升)与耗油时间t(小时)之间的函数关系式为()A.P=25+5tB.P=25﹣5tC.P=D.P=5t﹣252.下列运算正确的是()A.B.C.D.3.已知=﹣x,则()A.x≤0B.x≤﹣3C.x≥﹣3D.﹣3≤x≤04.如图,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于M,则点M的坐标为()A.(2,0)B.()C.()D.()5.一根蜡烛长20cm,点燃后每小时燃烧5cm,燃烧时剩下的长度为y(cm)与燃烧时间x(小时)的函数关系用图象表示为下图中的()A.B.C.D.6.等腰三角形的底边长为6,底边上的中线长为4,它的腰长为()A.7B.6C.5D.47.化简的结果为()A.B.﹣C.﹣D.8.若函数y=2x+3与y=3x﹣2b的图象交x轴于同一点,则b的值为()A.﹣3B.﹣C.9D.﹣9.在平面直角坐标系中,把直线y=x向左平移一个单位长度后,其直线解析式为()A.y=x+1B.y=x﹣1C.y=xD.y=x﹣210.两直线l1:y=2x﹣1,l2:y=x+1的交点坐标为()A.(﹣2,3)B.(2,﹣3)C.(﹣2,﹣3)D.(2,3)11.实数a在数轴上的位置如图所示,则化简后为()A.7B.﹣7C.2a﹣15D.无法确定12.如图所示,函数y1=|x|和的图象相交于(﹣1,1),(2,2)两点.当y1>y2时,x的取值范围是()A.x<﹣1B.﹣1<x<2C.x>2D.x<﹣1或x>213.小明从家骑车上学,先上坡到达A地后再下坡到达学校,所用的时间与路程如图所示.如果返回时,上、下坡速度仍然保持不变,那么他从学校回到家需要的时间是()A.8.6分钟B.9分钟C.12分钟D.16分钟14.如图,△ABC是等边三角形,P是∠ABC的平分线BD上一点,PE⊥AB于点E,线段BP的垂直平分线交BC于点F,垂足为点Q.若BF=2,则PE的长为()A.2B.2C.D.315.在直角坐标系中,我们把横、纵坐标都是整数的点叫做整点,且规定:正方形内部不包含边界上的点.观察如图所示的中心在原点、一边平行于x轴的正方形:边长为1的正方形内部有1个整点,边长为2的正方形内部有1个整点,边长为3的正方形内部有9个整点,…,则边长为9的正方形内的整点个数为()A.64B.49C.36D.81二、填空(3*6=18分)16.点A(3,﹣4)到y轴的距离为,到x轴的距离为,到原点距离为.17.与点A(3,4)关于x轴对称的点的坐标为,关于y轴对称的点的坐标为,关于原点对称的点的坐标为.18.计算2﹣6+=.19.直角三角形两条直角边的长分别为8,15,则斜边上的高为.20.如图,在平面直角坐标系中,等边三角形OAB的边长为4,把△OAB沿AB所在的直线翻折.点O落在点C处,则点C的坐标为.21.一次函数y=﹣x+2的图象上有两点A、B,A点的横坐标为2,B点的横坐标为a(0<a<4且a≠2),过点A、B分别作x的垂线,垂足为C、D,△AOC、△BOD的面积分别为S1、S2,则S1、S2的大小关系是.三、解答22.(计算时不能使用计算器)计算:.23..24.直线y=2x﹣8与x轴、y轴分别交于A、B,坐标原点为O,求△OAB的面积.25.已知一次函数的图象经过(3,5)和(﹣4,﹣9)两点.(1)求这个一次函数的解析式;(2)若点(a,2)在这个函数图象上,求a的值.26.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).(1)请在如图所示的网格平面内作出平面直角坐标系;(2)请作出△ABC关于y轴对称的△A′B′C′;(3)写出点B′的坐标.27.某住宅小区有一块草坪如图所示.已知AB=3米,BC=4米,CD=12米,DA=13米,且AB⊥BC,求这块草坪的面积.28.如图,一架25分米的梯子,斜立在一竖直的墙上,这时梯的底部距墙底端7分米,如果梯子的顶端沿墙下滑4分米,那么梯的底部将平滑多少?29.某蒜薹生产基地喜获丰收,收获蒜薹200吨.经市场调查,可采用批发、零售、冷库储藏后销售三种方式,并按这三种方式销售,计划平均每吨的售价及成本如下表:销售方式批发零售储藏后销售售价(元/吨)300045005500成本(元/吨)70010001200若经过一段时间,蒜薹按计划全部售出获得的总利润为y(元),蒜薹零售x(吨),且零售量是批发量的.(1)求y与x之间的函数关系式;(2)由于受条件限制,经冷库储藏售出的蒜薹最多80吨,求该生产基地按计划全部售完蒜薹获得的最大利润.2014-2015学年山东省济南市章丘市枣园中学八年级(上)期中数学试卷参考答案与试题解析一、选择(3*15=45分)1.已知油箱中有油25升,每小时耗油5升,则剩油量P(升)与耗油时间t(小时)之间的函数关系式为()A.P=25+5tB.P=25﹣5tC.P=D.P=5t﹣25考点:根据实际问题列一次函数关系式.分析:根据油箱内余油量=原有的油量﹣t小时消耗的油量,可列出函数关系式.解答:解:依题意得,油箱内余油量P(升)与行驶时间t(小时)的关系式为:P=25﹣5t.故选:B.点评:本题考查了根据实际问题列一次函数关系式.关键是明确油箱内余油量,原有的油量,t小时消耗的油量,三者之间的数量关系.2.下列运算正确的是()A.B.C.D.考点:二次根式的混合运算.专题:计算题.分析:根据二次根式运算的法则,分别计算得出各答案的值,即可得出正确答案.解答:解:A.∵=5,故此选项错误;B.∵4﹣=4﹣3=,故此选项错误;C.÷==3,故此选项错误;D.∵•==6,故此选项正确.故选:D.点评:此题主要考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.3.已知=﹣x,则()A.x≤0B.x≤﹣3C.x≥﹣3D.﹣3≤x≤0考点:二次根式的性质与化简.专题:计算题.分析:根据二次根式的非负性进行求解.解答:解:∵=﹣x≥0,∴x≤0,x+3≥0,∴﹣3≤x≤0,故选D.点评:本题考查积的算术平方根性质成立的条件,(A)、(C)不正确是因为只考虑了其中一个算术平方根的意义.4.如图,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于M,则点M的坐标为()A.(2,0)B.()C.()D.()考点:勾股定理;实数与数轴;矩形的性质.专题:数形结合.分析:在RT△ABC中利用勾股定理求出AC,继而得出AM的长,结合数轴的知识可得出点M的坐标.解答:解:由题意得,AC===,故可得AM=,BM=AM﹣AB=﹣3,又∵点B的坐标为(2,0),∴点M的坐标为(﹣1,0).故选C.点评:此题考查了勾股定理及坐标轴的知识,属于基础题,利用勾股定理求出AC的长度是解答本题的关键,难度一般.5.一根蜡烛长20cm,点燃后每小时燃烧5cm,燃烧时剩下的长度为y(cm)与燃烧时间x(小时)的函数关系用图象表示为下图中的()A.B.C.D.考点:一次函数的应用;一次函数的图象.专题:压轴题.分析:根据实际情况即可解答.解答:解:蜡烛剩下的长度随时间增长而缩短,根据实际意义不可能是D,更不可能是A、C.故选B.点评:解答一次函数的应用题时,必须考虑自变量的取值范围要使实际问题有意义.6.等腰三角形的底边长为6,底边上的中线长为4,它的腰长为()A.7B.6C.5D.4考点:勾股定理;等腰三角形的性质.专题:压轴题.分析:根据等腰三角形的性质可知BC上的中线AD同时是BC上的高线,根据勾股定理求出AB的长即可.解答:解:∵等腰三角形ABC中,AB=AC,AD是BC上的中线,∴BD=CD=BC=3,AD同时是BC上的高线,∴AB==5,故选C.点评:本题考查勾股定理及等腰三角形的性质.解题关键是得出中线AD是BC上的高线,难度适中.7.化简的结果为()A.B.﹣C.﹣D.考点:二次根式的性质与化简.分析:根据二次根式乘法,可化简二次根式.解答:解:原式==﹣,故选:C.点评:本题考查了二次根式的性质与化简,利用了二次根式的乘法.8.若函数y=2x+3与y=3x﹣2b的图象交x轴于同一点,则b的值为()A.﹣3B.﹣C.9D.﹣考点:两条直线相交或平行问题.专题:计算题.分析:本题可先求函数y=2x+3与x轴的交点,再把交点坐标代入函数y=3x﹣2b,即可求得b的值.解答:解:在函数y=2x+3中,当y=0时,x=﹣,即交点(﹣,0),把交点(﹣,0)代入函数y=3x﹣2b,求得:b=﹣.故选D.点评:注意先求函数y=2x+3与x轴的交点是解决本题的关键.9.在平面直角坐标系中,把直线y=x向左平移一个单位长度后,其直线解析式为()A.y=x+1B.y=x﹣1C.y=xD.y=x﹣2考点:一次函数图象与几何变换.专题:压轴题;探究型.分析:根据“左加右减”的原则进行解答即可.解答:解:由“左加右减”的原则可知,在平面直角坐标系中,把直线y=x向左平移一个单位长度后,其直线解析式为y=x+1.故选A.点评:本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.10.两直线l1:y=2x﹣1,l2:y=x+1的交点坐标为()A.(﹣2,3)B.(2,﹣3)C.(﹣2,﹣3)D.(2,3)考点:两条直线相交或平行问题.专题:计算题.分析:根据题意知,两直线有交点,所以列出方程组,解方程组即可.解答:解:根据题意得:,解得:,∴两直线l1:y=2x﹣1,l2:y=x+1的交点坐标为(2,3),故选:D.点评:方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式.11.实数a在数轴上的位置如图所示,则化简后为()A.7B.﹣7C.2a﹣15D.无法确定考点:二次根式的性质与化简;实数与数轴.分析:先从实数a在数轴上的位置,得出a的取值范围,然后求出(a﹣4)和(a﹣11)的取值范围,再开方化简.解答:解:从实数a在数轴上的位置可得,5<a<10,所以a﹣4>0,a﹣11<0,则,=a﹣4+11﹣a,=7.故选A.点评:本题主要考查了二次根式的化简,正确理解二次根式的算术平方根等概念.12.如图所示,函数y1=|x|和的图象相交于(﹣1,1),(2,2)两点.当y1>y2时,x的取值范围是()A.x<﹣1B.﹣1<x<2C.x>2D.x<﹣1或x>2考点:两条直线相交或平行问题.专题:函数思想.分析:首先由已知得出y1=x或y1=﹣x又相交于(﹣1,1),(2,2)两点,根据y1>y2列出不等式求出x的取值范围.解答:解:当x≥0时,y1=x,又,∵两直线的交点为(2,2),∴当x<0时,y1=﹣x,又,∵两直线的交点为(﹣1,1),由图象可知:当y1>y2时x的取值范围为:x<﹣1或x>2.故选D.点评:此题考查的是两条直线相交问题,关键要由已知列出不等式,注意象限和符号.13.小明从家骑车上学,先上坡到达A地后再下坡到达学校,所用的时间与路程如图所示.如果返回时,上、下坡速度仍然保持不变,那么他从学校回到家需要的时间是()A.8.6分钟B.9分钟C.12分钟D.16分钟考点:函数的图象.专题:压轴题.分析:根据图象可知:小明从家骑车上学,上坡的路程是1千米,用5分钟,则上坡速度是0.2千米/分钟;下坡路长是2千米,用4分钟,因而速度是0.5千米/分钟,由此即可求出答案.解答:解:他从学校回到家需要的时间是=12分钟.故选C.点评:读函数的图象时首先要理解横纵坐标表示的含义,理解问题叙述的过程,能够通过图象得到函数是随自变量的增大,知道函数
本文标题:【解析版】章丘市枣园中学2014-2015年八年级上期中数学试卷
链接地址:https://www.777doc.com/doc-7836633 .html