您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2015-2016学年八年级上期中数学试卷含答案解析
2015-2016学年湖北省武汉八年级(上)期中数学试卷一、细心选一选(本大题有10个小题,每小题3分共30分)1.下列图形中,不是轴对称图形的是()A.B.C.D.2.△ABC中BC边上的高作法正确的是()A.B.C.D.3.已知三角形两边长分别为3和8,则该三角形第三边的长可能是()A.5B.10C.11D.124.下列判断中错误的是()A.有两角和其中一个角的对边对应相等的两个三角形全等B.有一边相等的两个等边三角形全等C.有两边和一角对应相等的两个三角形全等D.有两边和其中一边上的中线对应相等的两个三角形全等5.三角形中,若一个角等于其他两个角的差,则这个三角形是()A.钝角三角形B.直角三角形C.锐角三角形D.等腰三角形6.如图,△ABC中,∠C=70°,若沿图中虚线截去∠C,则∠1+∠2=()A.360°B.250°C.180°D.140°7.如图,O是△ABC的∠ABC,∠ACB的平分线的交点,OD∥AB交BC于D,OE∥AC交BC于E,若△ODE的周长为10厘米,那么BC的长为()A.8cmB.9cmC.10cmD.11cm8.附加题:下图是由九个等边三角形组成的一个六边形,当最小的等边三角形边长为2cm时,这个六边形的周长为()cm.A.30B.40C.50D.609.如图,在四边形ABCD中,对角线AC平分∠BAD,AB>AD,下列结论中正确的是()A.AB﹣AD>CB﹣CDB.AB﹣AD=CB﹣CDC.AB﹣AD<CB﹣CDD.AB﹣AD与CB﹣CD的大小关系不确定10.如图,已知四边形ABCD中,对角线BD平分∠ABC,∠ACB=72°,∠ABC=50°,并且∠BAD+∠CAD=180°,那么∠ADC的度数为()A.62°B.65°C.68°D.70°二、精心填一填(本大题有6个小题,每小题3分,共18分)11.若正n边形的每个内角都等于150°,则n=______,其内角和为______.12.如图,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是______.13.如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是______.14.如图,等腰三角形ABC底边BC的长为4cm,面积是12cm2,腰AB的垂直平分线EF交AC于点F,若D为BC边上的中点,M为线段EF上一动点,则△BDM的周长最短为______cm.15.如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以An为顶点的内角度数是______.16.△ABC为等边三角形,在平面内找一点P,使△PAB,△PBC,△PAC均为等腰三角形,则这样的点P的个数为______.三、认真解一解(共72分)17.如图,点F、C在BE上,BF=CE,AB=DE,∠B=∠E.求证:∠A=∠D.18.如图,在△ABC中,∠C=∠ABC=2∠A,BD⊥AC于D,求∠DBC的度数.19.如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0),C(﹣1,0).(1)将△ABC向右平移5个单位,再向下平移4个单位得△A1B1C1,图中画出△A1B1C1,平移后点A的对应点A1的坐标是______.(2)将△ABC沿x轴翻折△A2BC,图中画出△A2BC,翻折后点A对应点A2坐标是______.(3)将△ABC向左平移2个单位,则△ABC扫过的面积为______.20.已知:如图,在△ABC中,点D是BC的中点,过点D作直线交AB,CA的延长线于点E,F.当BE=CF时,求证:AE=AF.21.如图,在平面直角坐标系中,点A在第二象限且纵坐标为1,点B在x轴的负半轴上,AB=AO,∠ABO=30°,直线MN经过原点O,点A关于直线MN的对称点A1在x轴的正半轴上,点B关于直线MN的对称点为B1.(1)求∠AOM的度数.(2)已知30°,60°,90°的三角形三边比为l::2,求线段AB1的长和B1的纵坐标.22.△ABC中,AC=BC,∠ACB=90°,点D,E分别在AB,BC上,且AD=BE,BD=AC.(1)如图1,连DE,求∠BDE的度数;(2)如图2,过E作EF⊥AB于F,求证:∠FED=∠CED;(3)在(2)的条件下,若BF=2,求CE的长.23.己知:在等腰三角形ABC中,AB=AC,AD⊥BC于点D,以AC为边作等边三角形ACE,直线BE交直线AD于点F,连接FC.(1)如图1,120°<∠BAC<180°,△ACE与△ABC在直线AC的异侧,且FC交AE于点M.①求证:∠FEA=∠FCA;②猜想线段FE,FA,FD之间的数量关系,并证明你的结论:(2)当60°<∠BAC<120°,且△ACE与△ABC在直线AC的同侧时,利用图2画出图形探究线段FE,FA,FD之间的数量关系,并直接写出你的结论.24.如图,线段AC∥x轴,点B在第四象限,AO平分∠BAC,AB交x轴于G,连OB,OC.(1)判断△AOG的形状,并证明;(2)如图1,若BO=CO且OG平分∠BOC,求证:OA⊥OB;(3)如图2,在(2)的条件下,点M为AO上的一点,且∠ACM=45°,若点B(1,﹣2),求M的坐标.2015-2016学年湖北省武汉八年级(上)期中数学试卷参考答案与试题解析一、细心选一选(本大题有10个小题,每小题3分共30分)1.下列图形中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念对各个选项进行判断即可.【解答】解:A、是轴对称图形,A不合题意;B、不是轴对称图形,B符合题意;C、是轴对称图形,C不合题意;D、是轴对称图形,D不合题意;故选:B.【点评】本题考查的是轴对称图形的概念,掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形是解题的关键.2.△ABC中BC边上的高作法正确的是()A.B.C.D.【考点】三角形的角平分线、中线和高.【分析】根据三角形高线的定义:过三角形的顶点向对边引垂线,顶点和垂足之间的线段叫做三角形的高线解答.【解答】解:为△ABC中BC边上的高的是D选项.故选D.【点评】本题考查了三角形的角平分线、中线、高线,熟记高线的定义是解题的关键.3.已知三角形两边长分别为3和8,则该三角形第三边的长可能是()A.5B.10C.11D.12【考点】三角形三边关系.【专题】常规题型.【分析】根据三角形的第三边大于两边之差,而小于两边之和求得第三边的取值范围,再进一步选择.【解答】解:根据三角形的三边关系,得第三边大于:8﹣3=5,而小于:3+8=11.则此三角形的第三边可能是:10.故选:B.【点评】本题考查了三角形的三边关系,即三角形的第三边大于两边之差,而小于两边之和,此题基础题,比较简单.4.下列判断中错误的是()A.有两角和其中一个角的对边对应相等的两个三角形全等B.有一边相等的两个等边三角形全等C.有两边和一角对应相等的两个三角形全等D.有两边和其中一边上的中线对应相等的两个三角形全等【考点】全等三角形的判定.【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,根据判定定理逐个判断即可.【解答】解:A、符合全等三角形的判定定理AAS,即能推出两三角形全等,故本选项错误;B、∵△ABC和△A′B′C′是等边三角形,∴AB=BC=AC,A′B′=B′C′=A′C′,∵AB=A′B′,∴AC=A′C′,BC=B′C′,即符合全等三角形的判定定理SSS,即能推出两三角形全等,故本选项错误;C、不符合全等三角形的判定定理,即不能推出两三角形全等,故本选项正确;D、如上图,∵AD、A′D′是三角形的中线,BC=B′C′,∴BD=B′D′,在△ABD和△A′B′D′中,,∴△ABD≌△A′B′D′(SSS),∴∠B=∠B′,在△ABC和△A′B′C′中,,∴△ABC≌△A′B′C′(SAS),故本选项错误;故选C.【点评】本题考查了全等三角形的判定定理和性质定理,等边三角形的性质的应用,主要考查学生对判定定理的理解能力,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应角相等.5.三角形中,若一个角等于其他两个角的差,则这个三角形是()A.钝角三角形B.直角三角形C.锐角三角形D.等腰三角形【考点】三角形内角和定理.【分析】三角形三个内角之和是180°,三角形的一个角等于其它两个角的差,列出两个方程,即可求出答案.【解答】解:设三角形的三个角分别为:a°、b°、c°,则由题意得:,解得:a=90,故这个三角形是直角三角形.故选:B.【点评】本题主要考查了直角三角形的有关性质,可利用方程进行求解.关键是掌握三角形内角和为180°.6.如图,△ABC中,∠C=70°,若沿图中虚线截去∠C,则∠1+∠2=()A.360°B.250°C.180°D.140°【考点】三角形内角和定理;多边形内角与外角.【分析】先利用三角形内角与外角的关系,得出∠1+∠2=∠C+(∠C+∠3+∠4),再根据三角形内角和定理即可得出结果.【解答】解:∵∠1、∠2是△CDE的外角,∴∠1=∠4+∠C,∠2=∠3+∠C,即∠1+∠2=∠C+(∠C+∠3+∠4)=70°+180°=250°.故选B.【点评】此题主要考查了三角形内角和定理及外角的性质,三角形内角和是180°;三角形的任一外角等于和它不相邻的两个内角之和.7.如图,O是△ABC的∠ABC,∠ACB的平分线的交点,OD∥AB交BC于D,OE∥AC交BC于E,若△ODE的周长为10厘米,那么BC的长为()A.8cmB.9cmC.10cmD.11cm【考点】等腰三角形的判定与性质.【分析】根据角平分线的定义以及平行线的性质,可以证得:∠OBD=∠BOD,则依据等角对等边可以证得OD=BD,同理,OE=EC,即可证得BC=C△ODE从而求解.【解答】解:∵BO是∠ACB的平分线,∴∠ABO=∠OBD,∵OD∥AB,∴∠ABO=∠BOD,∴∠OBD=∠BOD,∴OD=BD,同理,OE=EC,BC=BD+DE+EC=OD+DE+OE=C△ODE=10cm.故选C.【点评】本题考查了平行线的性质,以及等腰三角形的判定方法,正确证得OD=BD是关键.8.附加题:下图是由九个等边三角形组成的一个六边形,当最小的等边三角形边长为2cm时,这个六边形的周长为()cm.A.30B.40C.50D.60【考点】等边三角形的性质.【专题】压轴题;规律型.【分析】因为每个三角形都是等边的,从其中一个三角形入手,比右下角的以AB为边的三角形,设它的边长为x,则等边三角形的边长依次为x,x+x+2,x+2,x+2×2,x+2×2,x+3×2.所以六边形周长是2x+2(x+2)+2(x+2×2)+(x+3×2)=7x+18,而最大的三角形的边长AF等于AB的2倍,所以可以求出x,则可求得周长.【解答】解:设AB=x,∴等边三角形的边长依次为x,x+x+2,x+2,x+2×2,x+2×2,x+3×2,∴六边形周长是2x+2(x+2)+2(x+2×2)+(x+3×2)=7x+18,∵AF=2AB,即x+6=2x,∴x=6cm,∴周长为7x+18=60cm.故选D【点评】结合等边三角形的性质,解一元一次方程,关键是要找出其中的等量关系.9.如图,在四边形ABCD中,对角线AC平分∠BAD,AB>AD,下列结论中正确的是()A.AB﹣AD>CB﹣CDB.AB﹣AD=CB﹣CDC.AB﹣AD<CB﹣CDD.AB﹣AD与CB﹣CD的大小关系不确定【考点】全等三角形的判定与性质;三角形三边关系.【专题】常规题型.【分析】在AB上截取AE=AD,则易得△AEC≌△ADC,则AE=AD,CE=CD,则AB﹣AD=BE,放在△BCE中,根据三
本文标题:2015-2016学年八年级上期中数学试卷含答案解析
链接地址:https://www.777doc.com/doc-7837181 .html