您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2017人教版九年级数学上册期末检测题(一)含答案
期末检测题(一)时间:120分钟满分:120分一、选择题(每小题3分,共30分)1.(2016·厦门)方程x2-2x=0的根是()A.x1=x2=0B.x1=x2=2C.x1=0,x2=2D.x1=0,x2=-22.(2016·大庆)下列图形中是中心对称图形的有()个.A.1B.2C.3D.43.(2016·南充)抛物线y=x2+2x+3的对称轴是()A.直线x=1B.直线x=-1C.直线x=-2D.直线x=24.(2016·黔西南州)如图,△ABC的顶点均在⊙O上,若∠A=36°,则∠OBC的度数为()A.18°B.36°C.60°D.54°第4题图第6题图5.(2016·葫芦岛)下列一元二次方程中有两个相等实数根的是()A.2x2-6x+1=0B.3x2-x-5=0C.x2+x=0D.x2-4x+4=06.(2016·长春)如图,在Rt△ABC中,∠BAC=90°,将Rt△ABC绕点C按逆时针方向旋转48°得到Rt△A′B′C,点A在边B′C上,则∠B′的大小为()A.42°B.48°C.52°D.58°7.(2016·新疆)一个不透明的布袋里装有5个只有颜色不同的球,其中2个红球,3个白球,从布袋中随机摸出一个球,摸出红球的概率是()A.12B.23C.25D.358.(2016·兰州)如图,用一个半径为5cm的定滑轮带动重物上升,滑轮上一点P旋转了108°,假设绳索(粗细不计)与滑轮之间没有滑动,则重物上升了()A.πcmB.2πcmC.3πcmD.5πcm9.(2016·资阳)如图,在Rt△ABC中,∠ACB=90°,AC=23,以点B为圆心,BC的长为半径作弧,交AB于点D,若点D为AB的中点,则阴影部分的面积是()A.23-23πB.43-23πC.23-43πD.23π第8题图第9题图第10题图10.(2016·日照)如图是二次函数y=ax2+bx+c的图象,其对称轴为x=1,下列结论:①abc>0;②2a+b=0;③4a+2b+c<0;④若(-32,y1),(103,y2)是抛物线上两点,则y1<y2,其中结论正确的是()A.①②B.②③C.②④D.①③④二、填空题(每小题3分,共24分)11.(2016·日照)关于x的方程2x2-ax+1=0一个根是1,则它的另一个根为________.12.(2016·孝感)若一个圆锥的底面圆半径为3cm,其侧面展开图的圆心角为120°,则圆锥的母线长是______cm.13.(2016·哈尔滨)一个不透明的袋子中装有黑、白小球各两个,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率为________.14.(2016·黔东南州)如图,在△ACB中,∠BAC=50°,AC=2,AB=3,现将△ACB绕点A逆时针旋转50°得到△AC1B1,则阴影部分的面积为______.第14题图第18题图15.(2016·泸州)若二次函数y=2x2-4x-1的图象与x轴交于A(x1,0),B(x2,0)两点,则1x1+1x2的值为________.16.(2016·孝感)《九章算术》是东方数学思想之源,该书中记载:“今有勾八步,股一十五步,问勾中容圆径几何.”其意思为:“今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形内切圆的直径是多少步.”该问题的答案是________步.17.已知当x1=a,x2=b,x3=c时,二次函数y=12x2+mx对应的函数值分别为y1,y2,y3,若正整数a,b,c恰好是一个三角形的三边长,且当a<b<c时,都有y1<y2<y3,则实数m的取值范围是________.18.如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是AD︵的中点,CE⊥AB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CE,CB于点P,Q,连接AC,关于下列结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心,其中结论正确的是________(只需填写序号).三、解答题(共66分)19.(6分)用适当的方法解下列一元二次方程:(1)2x2+4x-1=0;(2)(y+2)2-(3y-1)2=0.20.(7分)如图,△BAD是由△BEC在平面内绕点B旋转60°而得,且AB⊥BC,BE=CE,连接DE.(1)求证:△BDE≌△BCE;(2)试判断四边形ABED的形状,并说明理由.21.(7分)(2016·呼伦贝尔)有甲、乙两个不透明的布袋,甲袋中有2个完全相同的小球,分别标有数字0和-2;乙袋中有3个完全相同的小球,分别标有数字-2,0和1,小明从甲袋中随机取出1个小球,记录标有的数字为x,再从乙袋中随机取出1个小球,记录标有的数字为y,这样确定了点Q的坐标(x,y).(1)写出点Q所有可能的坐标;(2)求点Q在x轴上的概率.22.(8分)已知关于x的一元二次方程x2-(2k+1)x+k2+2k=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)是否存在实数k,使得x1·x2-x12-x22≥0成立?若存在,请求出k的值;若不存在,请说明理由.23.(8分)用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为x米,面积为y平方米.(1)求y关于x的函数解析式;(2)当x为何值时,围成的养鸡场面积为60平方米?(3)能否围成面积为70平方米的养鸡场?如果能,请求出其边长;如果不能,请说明理由.24.(9分)如图,AB是⊙O的直径,ED︵=BD︵,连接ED,BD,延长AE交BD的延长线于点M,过点D作⊙O的切线交AB的延长线于点C.(1)若OA=CD=22,求阴影部分的面积;(2)求证:DE=DM.25.(10分)(2016·云南)草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y(千克)与销售单价x(元)符合一次函数关系,如图是y与x的函数关系图象.(1)求y与x的函数解析式;(2)设该水果销售店试销草莓获得的利润为W元,求W的最大值.26.(11分)(2016·泰安)如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为(2,9),与y轴交于点A(0,5),与x轴交于点E,B.(1)求二次函数y=ax2+bx+c的解析式;(2)过点A作AC平行于x轴,交抛物线于点C,点P为抛物线上的一点(点P在AC上方),作PD平行于y轴交AB于点D,问当点P在何位置时,四边形APCD的面积最大?并求出最大面积;(3)若点M在抛物线上,点N在其对称轴上,使得以A,E,N,M为顶点的四边形是平行四边形,且AE为其一边,求点M,N的坐标.期末检测题(一)1.C2.B3.B4.D5.D6.A7.C8.C9.A10.C11.1212.913.1414.54π15.-416.617.m-52点拨:方法一:∵正整数a,b,c恰好是一个三角形的三边长,且a<b<c,∴a最小是2,∵y1<y2<y3,∴-m2×12<2.5,解得m>-2.5.方法二:当a<b<c时,都有y1<y2<y3,即y1<y2,y2<y3.∴12a2+ma<12b2+mb,12b2+mb<12c2+mc,∴m>-12(a+b),m>-12(b+c).∵a,b,c恰好是一个三角形的三边长,a<b<c,∴a+b<b+c,∴m>-12(a+b),∵a,b,c为正整数,∴a,b,c的最小值分别为2,3,4,∴m>-12(a+b)≥-12(2+3)=-52,∴m>-52,故答案为m>-52.18.②③19.(1)x1=-1+62,x2=-1-62.(2)y1=-14,y2=32.20.(1)证明:∵△BAD是由△BEC在平面内绕点B旋转60°而得,∴DB=CB,∠ABD=∠EBC,∠ABE=60°,∵AB⊥BC,∴∠ABC=90°,∴∠DBE=∠CBE=30°,在△BDE和△BCE中,∵DB=CB,∠DBE=∠CBE,BE=BE,∴△BDE≌△BCE.(2)四边形ABED为菱形.理由如下:由(1)得△BDE≌△BCE,∵△BAD是由△BEC旋转而得,∴△BAD≌△BEC,∴BA=BE,AD=EC=ED,又∵BE=CE,∴BE=ED,∴四边形ABED为菱形.21.(1)画树状图为:共有6种等可能的结果数,它们为(0,-2),(0,0),(0,1),(-2,-2),(-2,0),(-2,1).(2)点Q在x轴上的结果数为2,所以点Q在x轴上的概率为26=13.22.(1)∵原方程有两个实数根,∴[-(2k+1)]2-4(k2+2k)≥0,∴k≤14,∴当k≤14时,原方程有两个实数根.(2)不存在实数k,使得x1·x2-x12-x22≥0成立.理由如下:假设存在实数k,使得x1·x2-x12-x22≥0成立.∵x1,x2是原方程的两根,∴x1+x2=2k+1,x1·x2=k2+2k.由x1·x2-x12-x22≥0,得3x1·x2-(x1+x2)2≥0,∴3(k2+2k)-(2k+1)2≥0,整理得-(k-1)2≥0,∴只有当k=1时,不等式才能成立.又∵由(1)知k≤14,∴不存在实数k,使得x1·x2-x12-x22≥0成立.23.(1)设围成的矩形一边长为x米,则矩形的另一边长为(16-x)米.依题意得y=x(16-x)=-x2+16x,故y关于x的函数解析式是y=-x2+16x.(2)由(1)知,y=-x2+16x.当y=60时,-x2+16x=60,解得x1=6,x2=10,即当x是6或10时,围成的养鸡场面积为60平方米.(3)不能围成面积为70平方米的养鸡场.理由如下:由(1)知,y=-x2+16x.当y=70时,-x2+16x=70,即x2-16x+70=0,因为Δ=(-16)2-4×1×70=-24<0,所以该方程无实数解.故不能围成面积为70平方米的养鸡场.24.(1)如图,连接OD,∵CD是⊙O切线,∴OD⊥CD,∵OA=CD=22,OA=OD,∴OD=CD=22,∴△OCD为等腰直角三角形,∴∠DOC=∠C=45°,∴S阴影=S△OCD-S扇形OBD=12×22×22-45π×(22)2360=4-π.(2)证明:如图,连接AD,∵AB是⊙O直径,∴∠ADB=∠ADM=90°,又∵ED︵=BD︵,∴ED=BD,∠MAD=∠BAD,在△AMD和△ABD中,∠ADM=∠ADB,AD=AD,∠MAD=∠BAD,∴△AMD≌△ABD,∴DM=BD,∴DE=DM.25.(1)设y与x的函数解析式为y=kx+b,根据题意,得20k+b=300,30k+b=280,解得k=-2,b=340,∴y与x的函数解析式为y=-2x+340(20≤x≤40).(2)由已知得W=(x-20)(-2x+340)=-2x2+380x-6800=-2(x-95)2+11250,∵-2<0,∴当x≤95时,W随x的增大而增大,∵20≤x≤40,∴当x=40时,W最大,最大值为-2(40-95)2+11250=5200(元).26.(1)设抛物线解析式为y=a(x-2)2+9,∵抛物线与y轴交于点A(0,5),∴4a+9=5,∴a=-1,y=-(x-2)2+9=-x2+4x+5.(2)当y=0时,-x2+4x+5=0,∴x1=-1,x2=5,∴E(-1,0),B(5,0),设直线AB的解析式为y=mx+n,∵A(0,5),B(5,0),∴m=-1,n=5,∴直线AB的解析式为y=-x+5.设P(x,-x2+4x+5),∴D(x,-x+5),∴PD=-x2+4x+5+x-5=-x2+5x,∵AC=4,∴S四边形APCD=12×AC×PD=2(-x2+5x)=-2x2+10x,∴当x=-102×(-2)=52时,∴即点P(52,354)时,S四边形APCD最大=252.(3)如图,过点M作MH垂直于对称轴,垂足为点H,∵四边形AENM是平行四边形
本文标题:2017人教版九年级数学上册期末检测题(一)含答案
链接地址:https://www.777doc.com/doc-7837517 .html