您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 安徽省安庆市2016-2017年九年级数学上期末模拟题及答案
安徽省安庆市2016-2017年九年级数学上册期末模拟题一、选择题(本大题共10小题,每小题4分,共40分。在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.在平面直角坐标系中,将抛物线y=x2-4先向右平移2个单位,再向上平移2个单位,得到的抛物线解析式为()A.y=(x+2)2+2B.y=(x-2)2-2C.y=(x-2)2+2D.y=(x+2)2-22.下列关于二次函数y=-x2图象的说法:①图象是一条抛物线;②开口向下;③对称轴是y轴;④顶点(0,0).其中正确的有()A.1个B.2个C.3个D.4个3.如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c<0的解集是()A.﹣1<x<5B.x>5C.x<﹣1且x>5D.x<﹣1或x>54.抛物线y=(x+2)2-3可以由抛物线y=x2平移得到,则下列平移过程正确的是()A.先向左平移2个单位,再向上平移3个单位B.先向左平移2个单位,再向下平移3个单位C.先向右平移2个单位,再向下平移3个单位D.先向右平移2个单位,再向上平移3个单位5.为了测量被池塘隔开的A,B两点之间的距离,根据实际情况,作出如图图形,其中AB⊥BE,EF⊥BE,AF交BE于D,C在BD上.有四位同学分别测量出以下四组数据:①BC,∠ACB;②CD,∠ACB,∠ADB;③EF,DE,BD;④DE,DC,BC.能根据所测数据,求出A,B间距离的有()A.1组B.2组C.3组D.4组6.如图,△ABC与△DEF是位似图形,位似比为2:3,已知AB=4,则DE的长等于()A.6B.5C.9D.7.如图,直径为10的⊙A经过点C(0,5)和点O(0,0),B是y轴右侧⊙A优弧上一点,则cos∠OBC的值为()A.B.C.D.8.在Rt△ABC中,∠C=90°,若斜边AB是直角边BC的3倍,则tanB的值是()A.2B.3C.D.9.如图,点B、D、C是⊙O上的点,∠BDC=130°,则∠BOC是()A.100°B.110°C.120°D.130°10.如图,△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(-1,0).以点C为位似中心,在x轴的下作△ABC的位似图形△A/B/C,并把△ABC的边长放大到原来的2倍.设点A/的对应点A的纵坐标是1.5,则点A的纵坐标是()A.3B.3C.﹣4D.4二、填空题(本大题共4小题,每小题5分,共20分)11.已知二次函数y=x2+bx+3的对称轴为x=2,则b=.12.若△ADE∽△ACB,且=,若四边形BCED的面积是2,则△ADE的面积是.13.在Rt△ABC中,∠C=90°,AB=4,BC=2,则sin=.14.如图,在正方形ABCD内有一折线段,其中AE丄EF,EF丄FC,并且AE=6,EF=8,FC=10,则正方形与其外接圆之间形成的阴影部分的面积为.三、计算题(本大题共1小题,共8分)15.计算:(﹣1)2016+2sin60°﹣|﹣|+π0.四、解答题(本大题共7小题,共68分)16.已知抛物线y=﹣x2+bx+c经过点A(3,0),B(﹣1,0).(1)求抛物线的解析式;(2)求抛物线的顶点坐标.17.某校九年级数学兴趣小组的同学开展了测量湘江宽度的活动.如图,他们在河东岸边的A点测得河西岸边的标志物B在它的正西方向,然后从A点出发沿河岸向正北方向行进550米到点C处,测得B在点C的南偏西60°方向上,他们测得的湘江宽度是多少米?(结果保留整数,参考数据:21.414≈,31.732≈)18.已知:如图,点P是⊙O外的一点,PB与⊙O相交于点A、B,PD与⊙O相交于C、D,AB=CD.求证:(1)PO平分∠BPD;(2)PA=PC.19.如图,△ABC中,E是AC上一点,且AE=AB,,以AB为直径的⊙交AC于点D,交EB于点F.(1)求证:BC与⊙O相切;(2)若,求AC的长.20.如图,直线y=-x+b与函数图象相交于A(1,4),B两点,延长AO交反比例函数图象于点C,连接OB.(1)求k和b的值;(2)直接写出一次函数值小于反比例函数值的自变量x的取值范围;(3)在y轴上是否存在一点P,使?若存在请求出点P坐标,若不存在请说明理由。21.如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,O是AB上一点,以OA为半径的⊙O经过点D.(1)求证:BC是⊙O切线;(2)若BD=5,DC=3,求AC的长.22.一种实验用轨道弹珠,在轨道上行驶5分钟后离开轨道,前2分钟其速度v(米/分)与时间t(分)满足二次函数v=at2,后三分钟其速度v(米/分)与时间t(分)满足反比例函数关系,如图,轨道旁边的测速仪测得弹珠1分钟末的速度为2米/分,求:(1)二次函数和反比例函数的关系式.(2)弹珠在轨道上行驶的最大速度.(3)求弹珠离开轨道时的速度.五、综合题(本大题共1小题,共14分)23.如图,在平面直角坐标系中,直线y=21x+2与x轴交于点A,与y轴交于点C.抛物线y=ax2+bx+c的对称轴是x=-1.5,且经过A、C两点,与x轴的另一交点为点B.(1)(①直接写出点B的坐标;②求抛物线解析式.(2)若点P为直线AC上方的抛物线上的一点,连接PA,PC.求△PAC的面积的最大值,并求出此时点P的坐标.(3)抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似?若存在,求出点M的坐标;若不存在,请说明理由.参考答案1.B2.D3.D.4.B5.C6.A7.B8.A.9.A10.B11.∴b=﹣4.12.【解答】解:∵△ADE∽△ACB,且=,∴△ADE与△ACB的面积比为:,∴△ADE与四边形BCED的面积比为:,又四边形BCED的面积是2,∴△ADE的面积是,故答案为:.13.【解答】解:∵在Rt△ABC中,∠C=90°,AB=4,BC=2,∴sinA=,∴∠A=60°,∴sin=sin30°=,故答案为:.14.80π﹣16015.【解答】解:(﹣1)2016+2sin60°﹣|﹣|+π0=1+2×﹣+1=1+﹣+1=216.【解答】解:(1)∵抛物线y=﹣x2+bx+c经过点A(3,0),B(﹣1,0).∴抛物线的解析式为;y=﹣(x﹣3)(x+1),即y=﹣x2+2x+3,(2)∵抛物线的解析式为y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线的顶点坐标为:(1,4).17.解:由题意得:ABC△中,9060550BACACBAC°,°,,tanABACACB5503≈952.6≈953≈(米).答:他们测得湘江宽度为953米18.略19.(1)证明:连接.∵为直径,∴∠.∵,∴△为等腰三角形.∴∠∠.∵,∴∠∠∴∠∠∠∠.∴∠.∴与⊙相切.(2)解:过作于点∠∠,∴.在△中,∠,∵,∴∠∴.在△中,∠,∴∵,⊥,∴∥∴△∽△∴.∴∴∴20.(1)解:将A(1,4)分别代入y=-x+b和y=得b=5,k=4.∴直线:y=-x+5反比例函数的表达式为:y=(2)x>4或0<x<1(3)过A作AM⊥x轴,过B作BN⊥x轴,由-x+5=解得B(4,1)∵,∴过A作AE⊥y轴,过C作CD⊥y轴,设∴∴,,∴21.【解答】(1)证明:连接OD;∵AD是∠BAC的平分线,∴∠1=∠3.∵OA=OD,∴∠1=∠2.∴∠2=∠3.∴OD∥AC.∴∠ODB=∠ACB=90°.∴OD⊥BC.∴BC是⊙O切线.(2)解:过点D作DE⊥AB,∵AD是∠BAC的平分线,∴CD=DE=3.在Rt△BDE中,∠BED=90°,由勾股定理得:BE=4∵∠BED=∠ACB=90°,∠B=∠B,∴△BDE∽△BAC.∴.∴AC=6.22.【解答】解:(1)v=at2的图象经过点(1,2),∴a=2.∴二次函数的解析式为:v=2t2,(0≤t≤2);设反比例函数的解析式为v=,由题意知,图象经过点(2,8),∴k=16,∴反比例函数的解析式为v=(2<t≤5);(2)∵二次函数v=2t2,(0≤t≤2)的图象开口向上,对称轴为y轴,∴弹珠在轨道上行驶的最大速度在2秒末,为8米/分;(3)弹珠在第5秒末离开轨道,其速度为v==3.2(米/分).23.
本文标题:安徽省安庆市2016-2017年九年级数学上期末模拟题及答案
链接地址:https://www.777doc.com/doc-7837555 .html