您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 诚仁中学2015-2016学年八年级上期中数学试卷及答案解析
2015-2016学年内蒙古巴彦淖尔市磴口县诚仁中学八年级(上)期中数学试卷一、选择题(每小题3分,共36分)1.下列图案是轴对称图形的有()个.A.1B.2C.3D.42.以下是四位同学在钝角三角形ABC中画BC边上的高,其中画法正确的是()A.B.C.D.3.现有3cm,4cm,7cm,9cm长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是()A.1个B.2个C.3个D.4个4.三角形的一个外角是锐角,则此三角形的形状是()A.锐角三角形B.钝角三角形C.直角三角形D.无法确定5.下面各角能成为某多边形的内角和的是()A.430°B.4343°C.4320°D.4360°6.能把一个任意三角形分成面积相等的两部分是()A.角平分线B.中线C.高D.A、B、C都可以7.如图,△ABC中,∠A=50°,点E、F在AB、AC上,沿EF向内折叠△AEF,得△DEF,则图中∠1+∠2等于()A.130°B.120°C.65°D.100°8.等腰三角形中,一个角为50°,则这个等腰三角形的顶角的度数为()A.150°B.80°C.50°或80°D.70°9.已知:如图,AC=AE,∠1=∠2,AB=AD,若∠D=25°,则∠B的度数为()A.25°B.30°C.15°D.30°或15°10.如图,将一副三角板叠放在一起,使直角的顶点重合于O,则∠AOC+∠DOB=()A.90°B.120°C.160°D.180°11.如图,在直角△ABC中,∠C=90°,AB的垂直平分线交AB于D,交AC于E,且∠EBC=2∠EBA,则∠A等于()A.20°B.22.5°C.25°D.27.5°12.下列命题中,真命题有()①角平分线上任意一点到角两边的距离相等②到一个角两边的距离相等的点在这个角的平分线上③三角形三个角平分线的交点到三个顶点的距离相等④三角形三条角平分线的交点到三边的距离相等.A.1个B.2个C.3个D.4个二、填空题(每小题3分,共24分)13.为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条,这样做的道理是__________.14.已知等腰三角形中的一边长为5,另一边长为9,则它的周长为__________.15.已知点M(﹣b,5)与点N(9,2a+3b)关于x轴对称,则a=__________,b=__________.16.如图,一个直角三角形纸片,剪去直角后,得到一个四边形,则∠1+∠2=__________度.17.在△ABC中,∠A=80°,I是∠B,∠C的角平分线的交点,则∠BIC=__________°.18.等腰△ABC中,AB=AC=10,∠A=30°,则腰AB上的高等于__________.19.在直角△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若CD=4,则点D到斜边AB的距离为__________.20.如图,已知AB⊥BD于点B,ED⊥BD于点D,AB=CD.BC=DE,连接AE,那么△ACE是__________三角形.三、解答题(每题10分共60分)21.一个多边形的内角和比它的外角的和的2倍还大180°,求这个多边形的边数.22.如图,在平面直角坐标系XOY中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)请画出△ABC关于y轴对称的△A′B′C′(其中A′,B′,C′分别是A,B,C的对应点,不写画法);(2)直接写出A′,B′,C′三点的坐标:A′(),B′(),C′()(3)计算△ABC的面积.23.如图,点D、E在△ABC的边BC上,AD=AE,AB=AC,求证:BD=EC.24.如图,已知△ABC为等边三角形,点D、E分别在BC、AC边上,且AE=CD,AD与BE相交于点F.(1)求证:△ABE≌△CAD;(2)求∠BFD的度数.25.如图,已知点M,N和∠AOB,求作一点P,使P到M,N的距离相等,且到∠AOB的两边的距离相等.(要求尺规作图,并保留作图痕迹)26.如图,在△ABC中,D是BC的中点,DE⊥AB于E,DF⊥AC于点F,且BE=CF.求证:AD平分∠BAC.2015-2016学年内蒙古巴彦淖尔市磴口县诚仁中学八年级(上)期中数学试卷一、选择题(每小题3分,共36分)1.下列图案是轴对称图形的有()个.A.1B.2C.3D.4【考点】轴对称图形.【分析】根据轴对称图形的概念对个图形分析判断即可得解.【解答】解:第一个图形是轴对称图形,第二个图形不是轴对称图形,第三个图形不是轴对称图形,第四个图形是轴对称图形,综上所述,轴对称图形共有2个.故选:B.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.以下是四位同学在钝角三角形ABC中画BC边上的高,其中画法正确的是()A.B.C.D.【考点】三角形的角平分线、中线和高.【分析】找到经过顶点A且与BC垂直的AD所在的图形即可.【解答】解:A、没有经过顶点A,不符合题意;B、高AD交BC的延长线于点D处,符合题意;C、垂足没有在BC上,不符合题意;D、AD不垂直于BC,不符合题意.故选B.【点评】过三角形的一个顶点向对边引垂线,顶点和垂足间的线段叫做高.3.现有3cm,4cm,7cm,9cm长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是()A.1个B.2个C.3个D.4个【考点】三角形三边关系.【专题】压轴题.【分析】从4条线段里任取3条线段组合,可有4种情况,看哪种情况不符合三角形三边关系,舍去即可.【解答】解:四条木棒的所有组合:3,4,7和3,4,9和3,7,9和4,7,9;只有3,7,9和4,7,9能组成三角形.故选:B.【点评】考查了三角形三边关系,三角形的三边关系:任意两边之和>第三边,任意两边之差<第三边;注意情况的多解和取舍.4.三角形的一个外角是锐角,则此三角形的形状是()A.锐角三角形B.钝角三角形C.直角三角形D.无法确定【考点】三角形的外角性质.【分析】三角形的一个外角是锐角,根据邻补角的定义可得它相邻的内角为钝角,即可判断三角形的形状是钝角三角形.【解答】解:∵三角形的一个外角是锐角,∴与它相邻的内角为钝角,∴三角形的形状是钝角三角形.故选B.【点评】本题考查了三角形的一个内角与它相邻的外角互补.5.下面各角能成为某多边形的内角和的是()A.430°B.4343°C.4320°D.4360°【考点】多边形内角与外角.【分析】利用多边形的内角和公式可知,多边形的内角和是180度的倍数,由此即可找出答案.【解答】解:因为多边形的内角和可以表示成(n﹣2)•180°(n≥3且n是整数),则多边形的内角和是180度的倍数,在这四个选项中是180的倍数的只有4320度.故选:C.【点评】本题主要考查了多边形的内角和定理,是需要识记的内容.6.能把一个任意三角形分成面积相等的两部分是()A.角平分线B.中线C.高D.A、B、C都可以【考点】三角形的面积;三角形的角平分线、中线和高.【分析】根据等底等高的三角形的面积相等解答.【解答】解:三角形的中线把三角形分成等底等高的两个三角形,面积相等,所以,能把一个任意三角形分成面积相等的两部分是中线.故选B.【点评】本题考查了三角形的面积,熟记等底等高的三角形的面积相等是解题的关键.7.如图,△ABC中,∠A=50°,点E、F在AB、AC上,沿EF向内折叠△AEF,得△DEF,则图中∠1+∠2等于()A.130°B.120°C.65°D.100°【考点】三角形内角和定理;翻折变换(折叠问题).【分析】根据三角形的内角和等于180°求出∠AEF+∠AFE的度数,再根据折叠的性质求出∠AED+∠AFD的度数,然后根据平角等于180°解答.【解答】解:∵∠A=50°,∴∠AEF+∠AFE=180°﹣50°=130°,∵沿EF向内折叠△AEF,得△DEF,∴∠AED+∠AFD=2(∠AEF+∠AFE)=2×130°=260°,∴∠1+∠2=180°×2﹣260°=360°﹣260°=100°.故选D.【点评】本题考查了三角形的内角和定理,翻转变换的性质,整体思想的利用是解题的关键.8.等腰三角形中,一个角为50°,则这个等腰三角形的顶角的度数为()A.150°B.80°C.50°或80°D.70°【考点】等腰三角形的性质.【专题】分类讨论.【分析】因为题中没有指明该角是顶角还是底角,所以要分两种情况进行分析.【解答】解:①50°是底角,则顶角为:180°﹣50°×2=80°;②50°为顶角;所以顶角的度数为50°或80°.故选:C.【点评】本题考查了等腰三角形的性质及三角形内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.9.已知:如图,AC=AE,∠1=∠2,AB=AD,若∠D=25°,则∠B的度数为()A.25°B.30°C.15°D.30°或15°【考点】全等三角形的判定.【分析】由∠1=∠2可得∠BAC=∠DAE,再加AC=AE,AB=AD,即可得△ABC≌△ADE,从而∠B=∠D=30°.【解答】解:∵∠1=∠2,∴∠BAC=∠DAE,又∵AC=AE,AB=AD,∴△ABC≌△ADE,∴∠B=∠D=25°.故选A.【点评】本题考查三角形全等的判定及性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与.10.如图,将一副三角板叠放在一起,使直角的顶点重合于O,则∠AOC+∠DOB=()A.90°B.120°C.160°D.180°【考点】角的计算.【分析】因为本题中∠AOC始终在变化,因此可以采用“设而不求”的解题技巧进行求解.【解答】解:设∠AOD=a,∠AOC=90°+a,∠BOD=90°﹣a,所以∠AOC+∠BOD=90°+a+90°﹣a=180°.故选D.【点评】本题考查了角度的计算问题,在本题中要注意∠AOC始终在变化,因此可以采用“设而不求”的解题技巧进行求解.11.如图,在直角△ABC中,∠C=90°,AB的垂直平分线交AB于D,交AC于E,且∠EBC=2∠EBA,则∠A等于()A.20°B.22.5°C.25°D.27.5°【考点】线段垂直平分线的性质;三角形内角和定理.【专题】方程思想.【分析】设∠A=x,根据线段垂直平分线的性质可知∠A=∠EBA=x,由于∠EBC=∠EBA可知,∠EBC=2∠EBA=2∠A=2x,由直角三角形的性质列出方程即可解答.【解答】解:设∠A=x,∵DE⊥AB,DE平分AB,∴∠A=∠ABE=x,∵∠EBC=2∠EBA,∴∠EBC=2x,∵△ABC是直角三角形,∴∠A+∠EBC+∠EBA=90°,即4x=90°,∴x=22.5°.故选B.【点评】本题考查的是线段垂直平分线的性质及直角三角形的性质,利用方程的思想求出∠A的值是解答此题的关键.12.下列命题中,真命题有()①角平分线上任意一点到角两边的距离相等②到一个角两边的距离相等的点在这个角的平分线上③三角形三个角平分线的交点到三个顶点的距离相等④三角形三条角平分线的交点到三边的距离相等.A.1个B.2个C.3个D.4个【考点】命题与定理.【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:①角平分线上任意一点到角两边的距离相等,是真命题;②到一个角两边的距离相等的点在这个角的平分线上,是真命题;③三角形三个角平分线的交点到三条边的距离相等,原命题是假命题;④三角形三条角平分线的交点到三边的距离相等,是真命题;真命题有3个,故选:C.【点评】此题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.二、填空题(每小题3分,共24分)13.为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条,这样做的道理是三角形具有稳定性.【考点】三角形的稳定性.【分析】用木条固定矩形门框,即
本文标题:诚仁中学2015-2016学年八年级上期中数学试卷及答案解析
链接地址:https://www.777doc.com/doc-7838097 .html